Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 651, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935857

RESUMO

Animals continuously gather sensory cues to move towards favourable environments. Efficient goal-directed navigation requires sensory perception and motor commands to be intertwined in a feedback loop, yet the neural substrate underlying this sensorimotor task in the vertebrate brain remains elusive. Here, we combine virtual-reality behavioural assays, volumetric calcium imaging, optogenetic stimulation and circuit modelling to reveal the neural mechanisms through which a zebrafish performs phototaxis, i.e. actively orients towards a light source. Key to this process is a self-oscillating hindbrain population (HBO) that acts as a pacemaker for ocular saccades and controls the orientation of successive swim-bouts. It further integrates visual stimuli in a state-dependent manner, i.e. its response to visual inputs varies with the motor context, a mechanism that manifests itself in the phase-locked entrainment of the HBO by periodic stimuli. A rate model is developed that reproduces our observations and demonstrates how this sensorimotor processing eventually biases the animal trajectory towards bright regions.Active locomotion requires closed-loop sensorimotor co ordination between perception and action. Here the authors show using behavioural, imaging and modelling approaches that gaze orientation during phototaxis behaviour in larval zebrafish is related to oscillatory dynamics of a neuronal population in the hindbrain.


Assuntos
Fototaxia/efeitos da radiação , Peixe-Zebra/fisiologia , Animais , Comportamento Animal/efeitos da radiação , Larva/fisiologia , Larva/efeitos da radiação , Luz , Locomoção/efeitos da radiação , Modelos Biológicos , Neurônios/fisiologia , Neurônios/efeitos da radiação , Rombencéfalo/fisiologia , Rombencéfalo/efeitos da radiação
2.
Elife ; 62017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28623664

RESUMO

Despite numerous physiological studies about reflexes in the spinal cord, the contribution of mechanosensory feedback to active locomotion and the nature of underlying spinal circuits remains elusive. Here we investigate how mechanosensory feedback shapes active locomotion in a genetic model organism exhibiting simple locomotion-the zebrafish larva. We show that mechanosensory feedback enhances the recruitment of motor pools during active locomotion. Furthermore, we demonstrate that inputs from mechanosensory neurons increase locomotor speed by prolonging fast swimming at the expense of slow swimming during stereotyped acoustic escape responses. This effect could be mediated by distinct mechanosensory neurons. In the spinal cord, we show that connections compatible with monosynaptic inputs from mechanosensory Rohon-Beard neurons onto ipsilateral V2a interneurons selectively recruited at high speed can contribute to the observed enhancement of speed. Altogether, our study reveals the basic principles and a circuit diagram enabling speed modulation by mechanosensory feedback in the vertebrate spinal cord.


Assuntos
Locomoção , Mecanorreceptores/fisiologia , Vias Neurais/fisiologia , Células Receptoras Sensoriais/fisiologia , Medula Espinal/fisiologia , Animais , Peixe-Zebra
3.
Curr Biol ; 26(21): 2841-2853, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27720623

RESUMO

In the vertebrate spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic neurons whose functions are only beginning to unfold. Recent evidence indicates that CSF-cNs detect local spinal bending and relay this mechanosensory feedback information to motor circuits, yet many CSF-cN targets remain unknown. Using optogenetics, patterned illumination, and in vivo electrophysiology, we show here that CSF-cNs provide somatic inhibition to fast motor neurons and excitatory sensory interneurons involved in the escape circuit. Ventral CSF-cNs respond to longitudinal spinal contractions and induce large inhibitory postsynaptic currents (IPSCs) sufficient to silence spiking of their targets. Upon repetitive stimulation, these IPSCs promptly depress, enabling the mechanosensory response to the first bend to be the most effective. When CSF-cNs are silenced, postural control is compromised, resulting in rollovers during escapes. Altogether, our data demonstrate how GABAergic sensory neurons provide powerful inhibitory feedback to the escape circuit to maintain balance during active locomotion.


Assuntos
Postura , Células Receptoras Sensoriais/fisiologia , Natação , Peixe-Zebra/fisiologia , Animais , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Neurônios Motores/fisiologia
4.
Curr Opin Neurobiol ; 41: 38-43, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27573214

RESUMO

The role of sensory feedback in shaping locomotion has been long debated. Recent advances in genetics and behavior analysis revealed the importance of proprioceptive pathways in spinal circuits. The mechanisms underlying peripheral mechanosensation enabled to unravel the networks that feedback to spinal circuits in order to modulate locomotion. Sensory inputs to the vertebrate spinal cord were long thought to originate from the periphery. Recent studies challenge this view: GABAergic sensory neurons located within the spinal cord have been shown to relay mechanical and chemical information from the cerebrospinal fluid to motor circuits. Innovative approaches combining genetics, quantitative analysis of behavior and optogenetics now allow probing the contribution of these sensory feedback pathways to locomotion and recovery following spinal cord injury.


Assuntos
Locomoção/fisiologia , Medula Espinal/fisiologia , Animais , Neurônios GABAérgicos/fisiologia , Humanos , Traumatismos da Medula Espinal
5.
Nat Commun ; 7: 10866, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26946992

RESUMO

Throughout vertebrates, cerebrospinal fluid-contacting neurons (CSF-cNs) are ciliated cells surrounding the central canal in the ventral spinal cord. Their contribution to modulate locomotion remains undetermined. Recently, we have shown CSF-cNs modulate locomotion by directly projecting onto the locomotor central pattern generators (CPGs), but the sensory modality these cells convey to spinal circuits and their relevance to innate locomotion remain elusive. Here, we demonstrate in vivo that CSF-cNs form an intraspinal mechanosensory organ that detects spinal bending. By performing calcium imaging in moving animals, we show that CSF-cNs respond to both passive and active bending of the spinal cord. In mutants for the channel Pkd2l1, CSF-cNs lose their response to bending and animals show a selective reduction of tail beat frequency, confirming the central role of this feedback loop for optimizing locomotion. Altogether, our study reveals that CSF-cNs constitute a mechanosensory organ operating during locomotion to modulate spinal CPGs.


Assuntos
Líquido Cefalorraquidiano/citologia , Neurônios/citologia , Medula Espinal/citologia , Animais , Fenômenos Biomecânicos , Movimento Celular , Líquido Cefalorraquidiano/metabolismo , Feminino , Masculino , Mecanorreceptores/citologia , Mecanorreceptores/metabolismo , Neurônios/metabolismo , Medula Espinal/química , Medula Espinal/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
J Physiol ; 591(7): 1809-22, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23339172

RESUMO

Hippocampal parvalbumin-expressing interneurons (PV INs) provide fast and reliable GABAergic signalling to principal cells and orchestrate hippocampal ensemble activities. Precise coordination of principal cell activity by PV INs relies in part on the efficacy of excitatory afferents that recruit them in the hippocampal network. Feed-forward (FF) inputs in particular from Schaffer collaterals influence spike timing precision in CA1 principal cells whereas local feedback (FB) inputs may contribute to pacemaker activities. Although PV INs have been shown to undergo activity-dependent long term plasticity, how both inputs are modulated during principal cell firing is unknown. Here we show that FF and FB synapses onto PV INs are endowed with distinct postsynaptic glutamate receptors which set opposing long-term plasticity rules. Inward-rectifying AMPA receptors (AMPARs) expressed at both FF and FB inputs mediate a form of anti-Hebbian long term potentiation (LTP), relying on coincident membrane hyperpolarization and synaptic activation. In contrast, FF inputs are largely devoid of NMDA receptors (NMDARs) which are more abundant at FB afferents and confer on them an additional form of LTP with Hebbian properties. Both forms of LTP are expressed with no apparent change in presynaptic function. The specific endowment of FF and FB inputs with distinct coincidence detectors allow them to be differentially tuned upon high frequency afferent activity. Thus, high frequency (>20 Hz) stimulation specifically potentiates FB, but not FF afferents. We propose that these differential, input-specific learning rules may allow PV INs to adapt to changes in hippocampal activity while preserving their precisely timed, clockwork operation.


Assuntos
Região CA1 Hipocampal/fisiologia , Interneurônios/fisiologia , Sinapses/fisiologia , Animais , Região CA1 Hipocampal/citologia , Potenciação de Longa Duração , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Parvalbuminas/metabolismo , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...