Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
MAGMA ; 36(3): 355-373, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37171689

RESUMO

OBJECT: Lower-field MR is reemerging as a viable, potentially cost-effective alternative to high-field MR, thanks to advances in hardware, sequence design, and reconstruction over the past decades. Evaluation of lower field strengths, however, is limited by the availability of lower-field systems on the market and their considerable procurement costs. In this work, we demonstrate a low-cost, temporary alternative to purchasing a dedicated lower-field MR system. MATERIALS AND METHODS: By ramping down an existing clinical 3 T MRI system to 0.75 T, proton signals can be acquired using repurposed 13C transmit/receive hardware and the multi-nuclei spectrometer interface. We describe the ramp-down procedure and necessary software and hardware changes to the system. RESULTS: Apart from presenting system characterization results, we show in vivo examples of cardiac cine imaging, abdominal two- and three-point Dixon-type water/fat separation, water/fat-separated MR Fingerprinting, and point-resolved spectroscopy. In addition, the ramp-down approach allows unique comparisons of, e.g., gradient fidelity of the same MR system operated at different field strengths using the same receive chain, gradient coils, and amplifiers. DISCUSSION: Ramping down an existing MR system may be seen as a viable alternative for lower-field MR research in groups that already own multi-nuclei hardware and can also serve as a testing platform for custom-made multi-nuclei transmit/receive coils.


Assuntos
Imageamento por Ressonância Magnética , Software , Imageamento por Ressonância Magnética/métodos , Prótons
2.
MAGMA ; 36(3): 499-512, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37202655

RESUMO

OBJECTIVE: To implement magnetic resonance fingerprinting (MRF) on a permanent magnet 50 mT low-field system deployable as a future point-of-care (POC) unit and explore the quality of the parameter maps. MATERIALS AND METHODS: 3D MRF was implemented on a custom-built Halbach array using a slab-selective spoiled steady-state free precession sequence with 3D Cartesian readout. Undersampled scans were acquired with different MRF flip angle patterns and reconstructed using matrix completion and matched to the simulated dictionary, taking excitation profile and coil ringing into account. MRF relaxation times were compared to that of inversion recovery (IR) and multi-echo spin echo (MESE) experiments in phantom and in vivo. Furthermore, B0 inhomogeneities were encoded in the MRF sequence using an alternating TE pattern, and the estimated map was used to correct for image distortions in the MRF images using a model-based reconstruction. RESULTS: Phantom relaxation times measured with an optimized MRF sequence for low field were in better agreement with reference techniques than for a standard MRF sequence. In vivo muscle relaxation times measured with MRF were longer than those obtained with an IR sequence (T1: 182 ± 21.5 vs 168 ± 9.89 ms) and with an MESE sequence (T2: 69.8 ± 19.7 vs 46.1 ± 9.65 ms). In vivo lipid MRF relaxation times were also longer compared with IR (T1: 165 ± 15.1 ms vs 127 ± 8.28 ms) and with MESE (T2: 160 ± 15.0 ms vs 124 ± 4.27 ms). Integrated ΔB0 estimation and correction resulted in parameter maps with reduced distortions. DISCUSSION: It is possible to measure volumetric relaxation times with MRF at 2.5 × 2.5 × 3.0 mm3 resolution in a 13 min scan time on a 50 mT permanent magnet system. The measured MRF relaxation times are longer compared to those measured with reference techniques, especially for T2. This discrepancy can potentially be addressed by hardware, reconstruction and sequence design, but long-term reproducibility needs to be further improved.


Assuntos
Imageamento por Ressonância Magnética , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Músculos , Imagens de Fantasmas , Lipídeos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo
3.
Magn Reson Med ; 90(1): 133-149, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36883748

RESUMO

PURPOSE: To compare the performances of uniform-density spiral (UDS), variable-density spiral (VDS), and dual-density spiral (DDS) samplings in multi-shot diffusion imaging, and determine a sampling strategy that balances reliability of shot navigator and overall DWI image quality. THEORY AND METHODS: UDS, VDS, and DDS trajectories were implemented to achieve four-shot diffusion-weighted spiral imaging. First, the static B0 off-resonance effects in UDS, VDS, and DDS acquisitions were analyzed based on a signal model. Then, in vivo experiments were performed to verify the theoretical analyses, and fractional anisotropy (FA) fitting residuals were used to quantitatively assess the quality of spiral diffusion data for tensor estimation. Finally, the SNR performances and g-factor behavior of the three spiral samplings were evaluated using a Monte Carlo-based pseudo multiple replica method. RESULTS: Among the three spiral trajectories with the same readout duration, UDS sampling exhibited the least off-resonance artifacts. This was most evident when the static B0 off-resonance effect was severe. The UDS diffusion images had higher anatomical fidelity and lower FA fitting residuals than the other two counterparts. Furthermore, the four-shot UDS acquisition achieved the best SNR performance in diffusion imaging with 12.11% and 40.85% improvements over the VDS and DDS acquisitions with the same readout duration, respectively. CONCLUSION: UDS sampling is an efficient spiral acquisition scheme for high-resolution diffusion imaging with reliable navigator information. It provides superior off-resonance performance and SNR efficiency over the VDS and DDS samplings for the tested scenarios.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Interpretação de Imagem Assistida por Computador/métodos , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Imagem Ecoplanar
4.
NMR Biomed ; 36(1): e4822, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36031585

RESUMO

The purpose of this study was to develop a self-navigation strategy to improve scan efficiency and image quality of water/fat-separated, diffusion-weighted multishot echo-planar imaging (ms-EPI). This is accomplished by acquiring chemical shift-encoded diffusion-weighted data and using an appropriate water-fat and diffusion-encoded signal model to enable reconstruction directly from k-space data. Multishot EPI provides reduced geometric distortion and improved signal-to-noise ratio in diffusion-weighted imaging compared with single-shot approaches. Multishot acquisitions require corrections for physiological motion-induced shot-to-shot phase errors using either extra navigators or self-navigation principles. In addition, proper fat suppression is important, especially in regions with large B0 inhomogeneity. This makes the use of chemical shift encoding attractive. However, when combined with ms-EPI, shot-to-shot phase navigation can be challenging because of the spatial displacement of fat signals along the phase-encoding direction. In this work, a new model-based, self-navigated water/fat separation reconstruction algorithm is proposed. Experiments in legs and in the head-neck region of 10 subjects were performed to validate the algorithm. The results are compared with an image-based, two-dimensional (2D) navigated water/fat separation approach for ms-EPI and with a conventional fat saturation approach. Compared with the 2D navigated method, the use of self-navigation reduced the shot duration time by 30%-35%. The proposed algorithm provided improved diffusion-weighted water images in both leg and head-neck regions compared with the 2D navigator-based approach. The proposed algorithm also produced better fat suppression compared with the conventional fat saturation technique in the B0 inhomogeneous regions. In conclusion, the proposed self-navigated reconstruction algorithm can produce superior water-only diffusion-weighted EPI images with less artefacts compared with the existing methods.


Assuntos
Imagem Ecoplanar , Água , Humanos
5.
MAGMA ; 35(2): 223-234, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34687369

RESUMO

OBJECTIVE: To visualize the encoding capability of magnetic resonance fingerprinting (MRF) dictionaries. MATERIALS AND METHODS: High-dimensional MRF dictionaries were simulated and embedded into a lower-dimensional space using t-distributed stochastic neighbor embedding (t-SNE). The embeddings were visualized via colors as a surrogate for location in low-dimensional space. First, we illustrate this technique on three different MRF sequences. We then compare the resulting embeddings and the color-coded dictionary maps to these obtained with a singular value decomposition (SVD) dimensionality reduction technique. We validate the t-SNE approach with measures based on existing quantitative measures of encoding capability using the Euclidean distance. Finally, we use t-SNE to visualize MRF sequences resulting from an MRF sequence optimization algorithm. RESULTS: t-SNE was able to show clear differences between the color-coded dictionary maps of three MRF sequences. SVD showed smaller differences between different sequences. These findings were confirmed by quantitative measures of encoding. t-SNE was also able to visualize differences in encoding capability between subsequent iterations of an MRF sequence optimization algorithm. DISCUSSION: This visualization approach enables comparison of the encoding capability of different MRF sequences. This technique can be used as a confirmation tool in MRF sequence optimization.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
6.
Magn Reson Med ; 87(4): 1771-1783, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34752650

RESUMO

PURPOSE: To develop a methodology to simultaneously perform single echo Dixon water-fat imaging and susceptibility-weighted imaging (SWI) based on a single echo time (TE) ultra-short echo time (UTE) (sUTE) scan to assess vertebral fractures and degenerative bone changes in the thoracolumbar spine. METHODS: A methodology was developed to solve the smoothness-constrained inverse water-fat problem to separate water and fat while removing unwanted low-frequency phase terms. Additionally, the corrected UTE phase was used for SWI. UTE imaging (TE: 0.14 ms, 3T MRI) was performed in the lumbar spine of nine patients with vertebral fractures and bone marrow edema (BME). All images were reviewed by two radiologists. Water- and fat-separated images were analyzed in comparison with short-tau inversion recovery (STIR) and with respect to BME visibility. The visibility of fracture lines and cortical outlining of the UTE magnitude images were analyzed in comparison with computed tomography. RESULTS: Unwanted phase components, dominated by the B1 phase, were removed from the UTE phase images. The rating of the diagnostic quality of BME visualization showed a high preference for the sUTE-Dixon water- and fat-separated images in comparison with STIR. The UTE magnitude images enabled better visualizing fracture lines compared with STIR and slightly better visibility of cortical outlining. With increasing SWI weighting osseous structures and fatty tissues were enhanced. CONCLUSION: The proposed sUTE-Dixon-SWI methodology allows the removal of unwanted low-frequency phases and enables water-fat separation and SWI processing from a single complex UTE image. The methodology can be used for the simultaneous assessment of vertebral fractures and BME of the thoracolumbar spine.


Assuntos
Imageamento por Ressonância Magnética , Água , Edema/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Coluna Vertebral , Tomografia Computadorizada por Raios X/métodos
7.
Magn Reson Med ; 86(6): 3034-3051, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34255392

RESUMO

PURPOSE: To develop a new water-fat separation and B0 estimation algorithm to effectively suppress the multiple resonances of fat signal in EPI. This is especially relevant for DWI where fat is often a confounding factor. METHODS: Water-fat separation based on chemical-shift encoding enables robust fat suppression in routine MRI. However, for EPI the different chemical-shift displacements of the multiple fat resonances along the phase-encoding direction can be problematic for conventional separation algorithms. This work proposes a suitable model approximation for EPI under B0 and fat off-resonance effects, providing a feasible multi-peak water-fat separation algorithm. Simulations were performed to validate the algorithm. In vivo validation was performed in 6 volunteers, acquiring spin-echo EPI images in the leg (B0 homogeneous) and head-neck (B0 inhomogeneous) regions, using a TE-shifted interleaved EPI sequence with/without diffusion sensitization. The results are numerically and statistically compared with voxel-independent water-fat separation and fat saturation techniques to demonstrate the performance of the proposed algorithm. RESULTS: The reference separation algorithm without the proposed spatial shift correction caused water-fat ambiguities in simulations and in vivo experiments. Some spectrally selective fat saturation approaches also failed to suppress fat in regions with severe B0 inhomogeneities. The proposed algorithm was able to achieve improved fat suppression for DWI data and ADC maps in the head-neck and leg regions. CONCLUSION: The proposed algorithm shows improved suppression of the multi-peak fat components in multi-shot interleaved EPI applications compared to the conventional fat saturation approaches and separation algorithms.


Assuntos
Imagem Ecoplanar , Água , Algoritmos , Imagem de Difusão por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
8.
Magn Reson Med ; 86(3): 1701-1717, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33955588

RESUMO

PURPOSE: To improve the robustness of diffusion-weighted imaging (DWI) data acquired with segmented simultaneous multi-slice (SMS) echo-planar imaging (EPI) against in-plane and through-plane rigid motion. THEORY AND METHODS: The proposed algorithm incorporates a 3D rigid motion correction and wavelet denoising into the image reconstruction of segmented SMS-EPI diffusion data. Low-resolution navigators are used to estimate shot-specific diffusion phase corruptions and 3D rigid motion parameters through SMS-to-volume registration. The shot-wise rigid motion and phase parameters are integrated into a SENSE-based full-volume reconstruction for each diffusion direction. The algorithm is compared to a navigated SMS reconstruction without gross motion correction in simulations and in vivo studies with four-fold interleaved 3-SMS diffusion tensor acquisitions. RESULTS: Simulations demonstrate high fidelity was achieved in the SMS-to-volume registration, with submillimeter registration errors and improved image reconstruction quality. In vivo experiments validate successful artifact reduction in 3D motion-compromised in vivo scans with a temporal motion resolution of approximately 0.3 s. CONCLUSION: This work demonstrates the feasibility of retrospective 3D rigid motion correction from shot navigators for segmented SMS DWI.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Movimento (Física) , Reprodutibilidade dos Testes , Estudos Retrospectivos
9.
Magn Reson Med ; 85(6): 3060-3070, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33604921

RESUMO

PURPOSE: Non-Cartesian imaging sequences involve sampling during rapid variation of the encoding field gradients. The quality of the reconstructed images often suffers from insufficient knowledge of the exact dynamics of the actual fields applied during sampling. METHODS: We propose determination of the accurate field dynamics by measuring the currents at the gradient amplifier outputs using the amplifiers' internal sensors concurrently with imaging. The actual dynamic field evolution is then determined by convolution with the measured current-to-field impulse response function of the gradient coil. Integration of the gradient field evolution allows derivation of the k-space trajectory for reconstruction. RESULTS: The current-based approach is investigated in spiral and ultrashort TE phantom imaging. In comparison with the model-based product reconstruction as well as a correction approach based on the conventional input waveform-to-field impulse response function, it provides slightly improved image quality. The improvement is ascribed to a better representation of eddy current and amplifier nonlinearity effects. CONCLUSION: Trajectory calculation based on measured amplifier output currents offers a robust, purely measurement-based alternative to conventional model-based approaches. The implementation can mitigate gradient amplifier imperfections with no or little additional hardware effort.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Algoritmos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Leitura
10.
Magn Reson Imaging ; 78: 7-17, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548457

RESUMO

PURPOSE: To improve the signal-to-noise ratio (SNR) and image sharpness for whole brain isotropic 0.5 mm three-dimensional (3D) T1 weighted (T1w) turbo spin echo (TSE) intracranial vessel wall imaging (IVWI) at 3 T. METHODS: The variable flip angle (VFA) method enables useful optimization across scan efficiency, SNR and relaxation induced point spread function (PSF) for TSE imaging. A convolutional neural network (CNN) was developed to retrospectively enhance the acquired TSE image with PSF blurring. The previously developed VFA method to increase SNR at the expense of blur can be combined with the presented PSF correction to yield long echo train length (ETL) scan while the acquired image remains high SNR and sharp. The overall approach can enable an optimized solution for accelerated whole brain high-resolution 3D T1w TSE IVWI. Its performance was evaluated on healthy volunteers and patients. RESULTS: The PSF blurred image acquired by a long ETL scan can be enhanced by CNN to restore similar sharpness as a short ETL scan, which outperforms the traditional linear PSF enhancement approach. For accelerated whole brain IVWI on volunteers, the optimized isotropic 0.5 mm 3D T1w TSE sequence with CNN based PSF enhancement provides sufficient flow suppression and improved image quality. Preliminary results on patients further demonstrated its improved delineation for intracranial vessel wall and plaque morphology. CONCLUSION: The CNN enhanced VFA TSE imaging enables an overall image quality improvement for high-resolution 3D T1w IVWI, and may provide a better tradeoff across scan efficiency, SNR and PSF for 3D TSE acquisitions.


Assuntos
Aumento da Imagem/métodos , Imageamento Tridimensional , Angiografia por Ressonância Magnética/métodos , Redes Neurais de Computação , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Razão Sinal-Ruído
11.
MAGMA ; 34(4): 631-642, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33502668

RESUMO

OBJECTIVE: To correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong [Formula: see text] inhomogeneity and gradient field nonlinearities. MATERIALS AND METHODS: Conventional image distortion correction algorithms require accurate [Formula: see text] maps which are not possible to acquire directly when the [Formula: see text] inhomogeneities also produce significant image distortions. Here we use a readout gradient time-shift in a TSE sequence to encode the [Formula: see text] field inhomogeneities in the k-space signals. Using a non-shifted and a shifted acquisition as input, [Formula: see text] maps and images were reconstructed in an iterative manner. In each iteration, [Formula: see text] maps were reconstructed from the phase difference using Tikhonov regularization, while images were reconstructed using either conjugate phase reconstruction (CPR) or model-based (MB) image reconstruction, taking the reconstructed field map into account. MB reconstructions were, furthermore, combined with compressed sensing (CS) to show the flexibility of this approach towards undersampling. These methods were compared to the standard fast Fourier transform (FFT) image reconstruction approach in simulations and measurements. Distortions due to gradient nonlinearities were corrected in CPR and MB using simulated gradient maps. RESULTS: Simulation results show that for moderate field inhomogeneities and gradient nonlinearities, [Formula: see text] maps and images reconstructed using iterative CPR result in comparable quality to that for iterative MB reconstructions. However, for stronger inhomogeneities, iterative MB reconstruction outperforms iterative CPR in terms of signal intensity correction. Combining MB with CS, similar image and [Formula: see text] map quality can be obtained without a scan time penalty. These findings were confirmed by experimental results. DISCUSSION: In case of [Formula: see text] inhomogeneities in the order of kHz, iterative MB reconstructions can help to improve both image quality and [Formula: see text] map estimation.


Assuntos
Imageamento por Ressonância Magnética , Imãs , Algoritmos , Simulação por Computador , Análise de Fourier , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
12.
Magn Reson Med ; 85(4): 2001-2015, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33251655

RESUMO

PURPOSE: UTE sequences typically acquire data during the ramping up of the gradient fields, which makes UTE imaging prone to eddy current and system delay effects. The purpose of this work was to use a simple gradient impulse response function (GIRF) measurement to estimate the real readout gradient waveform and to demonstrate that precise knowledge of the gradient waveform is important in the context of high-resolution UTE musculoskeletal imaging. METHODS: The GIRF was measured using the standard hardware of a 3 Tesla scanner and applied on 3D radial UTE data (TE: 0.14 ms). Experiments were performed on a phantom, in vivo on a healthy knee, and in vivo on patients with spine fractures. UTE images were reconstructed twice, first using the GIRF-corrected gradient waveforms and second using nominal-corrected waveforms, correcting for the low-pass filter characteristic of the gradient chain. RESULTS: Images reconstructed with the nominal-corrected gradient waveforms exhibited blurring and showed edge artifacts. The blurring and the edge artifacts were reduced when the GIRF-corrected gradient waveforms were used, as shown in single-UTE phantom scans and in vivo dual-UTE gradient-echo scans in the knee. Further, the importance of the GIRF-based correction was indicated in UTE images of the lumbar spine, where thin bone structures disappeared when the nominal correction was employed. CONCLUSION: The presented GIRF-based trajectory correction method using standard scanner hardware can improve the quality of high-resolution UTE musculoskeletal imaging.


Assuntos
Processamento de Imagem Assistida por Computador , Sistema Musculoesquelético , Artefatos , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas
13.
Br J Radiol ; 93(1111): 20200113, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32496816

RESUMO

MRI developed during the last half-century from a very basic concept to an indispensable non-ionising medical imaging technique that has found broad application in diagnostics, therapy control and far beyond. Due to its excellent soft-tissue contrast and the huge variety of accessible tissue- and physiological-parameters, MRI is often preferred to other existing modalities. In the course of its development, MRI underwent many substantial transformations. From the beginning, starting as a proof of concept, much effort was expended to develop the appropriate basic scanning technology and methodology, and to establish the many clinical contrasts (e.g., T1, T2, flow, diffusion, water/fat, etc.) that MRI is famous for today. Beyond that, additional prominent innovations to the field have been parallel imaging and compressed sensing, leading to significant scanning time reductions, and the move towards higher static magnetic field strengths, which led to increased sensitivity and improved image quality. Improvements in workflow and the use of artificial intelligence are among many current trends seen in this field, paving the way for a broad use of MRI. The 125th anniversary of the BJR is a good point to reflect on all these changes and developments and to offer some slightly speculative ideas as to what the future may bring.


Assuntos
Invenções/tendências , Imageamento por Ressonância Magnética/tendências , Inteligência Artificial/tendências , Meios de Contraste , Aprendizado Profundo/tendências , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Magnetismo , Fluxo de Trabalho
14.
Magn Reson Med ; 84(2): 646-662, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31898834

RESUMO

PURPOSE: To minimize the known biases introduced by fat in rapid T1 and T2 quantification in muscle using a single-run magnetic resonance fingerprinting (MRF) water-fat separation sequence. METHODS: The single-run MRF acquisition uses an alternating in-phase/out-of-phase TE pattern to achieve water-fat separation based on a 2-point DIXON method. Conjugate phase reconstruction and fat deblurring were applied to correct for B0 inhomogeneities and chemical shift blurring. Water and fat signals were matched to the on-resonance MRF dictionary. The method was first tested in a multicompartment phantom. To test whether the approach is capable of measuring small in vivo dynamic changes in relaxation times, experiments were run in 9 healthy volunteers; parameter values were compared with and without water-fat separation during muscle recovery after plantar flexion exercise. RESULTS: Phantom results show the robustness of the water-fat resolving MRF approach to undersampling. Parameter maps in volunteers show a significant (P < .01) increase in T1 (105 ± 94 ms) and decrease in T2 (14 ± 6 ms) when using water-fat-separated MRF, suggesting improved parameter quantification by reducing the well-known biases introduced by fat. Exercise results showed smooth T1 and T2 recovery curves. CONCLUSION: Water-fat separation using conjugate phase reconstruction is possible within a single-run MRF scan. This technique can be used to rapidly map relaxation times in studies requiring dynamic scanning, in which the presence of fat is problematic.


Assuntos
Processamento de Imagem Assistida por Computador , Água , Algoritmos , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Músculos , Imagens de Fantasmas
15.
NMR Biomed ; 33(12): e4185, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31814181

RESUMO

Multi-shot techniques offer improved resolution and signal-to-noise ratio for diffusion- weighted imaging, but make the acquisition vulnerable to shot-specific phase variations and inter-shot macroscopic motion. Several model-based reconstruction approaches with iterative phase correction have been proposed, but robust macroscopic motion estimation is still challenging. Segmented diffusion imaging with iterative motion-corrected reconstruction (SEDIMENT) uses iteratively refined data-driven shot navigators based on sensitivity encoding to cure phase and rigid in-plane motion artifacts. The iterative scheme is compared in simulations and in vivo with a non-iterative reference algorithm for echo-planar imaging with up to sixfold segmentation. The SEDIMENT framework supports partial Fourier acquisitions and furthermore includes options for data rejection and learning-based modules to improve robustness and convergence.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Movimento (Física) , Anisotropia , Simulação por Computador , Humanos
16.
Magn Reson Med ; 83(4): 1250-1262, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31628767

RESUMO

PURPOSE: To develop a self-calibrating approach for the estimation of wave point spread function (PSF) and coil sensitivities from the subsampled wave-encoded k-space, and evaluate its performance for wave-encoded 3D turbo spin echo (TSE) imaging. METHODS: A low rank subspace parametric model was demonstrated in simulation to improve the representation for practical wave encoding k-space trajectories with aperiodicity, and an autofocus metric for the entire imaging volume was used to calibrate the wave PSF in a 2-stage manner from coarse to refined estimation. The coil sensitivities can be extracted from the shifted central region of wave PSF corrected subsampled k-space, and further used with wave PSF for wave-encoded parallel imaging (PI) reconstruction. The wave encoding gradients were integrated into the 3D TSE sequence considering eddy current reduction aspects and maintaining of the Carr-Purcell-Meiboom-Gill condition. Phantom and in vivo brain experiments were performed to evaluate the accuracy of wave PSF self-calibration and to compare the PI reconstruction performance between wave and Cartesian encoding scheme. RESULTS: The self-calibrated wave PSF, estimated from different k-space undersampling patterns can robustly correct the wave encoding induced image artifacts given sufficient central autocalibration data. The self-calibrating wave-encoded PI reconstruction has demonstrated its improved performance in reduced aliasing artifacts and noise amplification in comparison to the Cartesian-encoded PI reconstruction results for 3D TSE imaging. CONCLUSION: The proposed self-calibrating wave-encoded method allows robust calibration of wave PSF and coil sensitivities from the subsampled k-space, and improves the overall image quality for accelerated 3D TSE imaging.


Assuntos
Algoritmos , Artefatos , Imagem Ecoplanar , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas
17.
PLoS One ; 14(9): e0222573, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31525248

RESUMO

Magnetic Resonance Imaging (MRI) has become a valuable imaging modality in ophthalmology, especially for the diagnosis and treatment planning of patients with uveal melanoma, the most common primary intra-ocular tumor. We aim to develop and evaluate the value of silent Zero Echo Time (ZTE) MRI to image patients with ocular tumors at 7Tesla. Therefore, ZTE and different types of magnetization-prepared ZTE (FLAIR, SPIR, T2 and Saturation recovery), have been developed. After an initial validation with 7 healthy subjects, nine patients with an eye tumor have been evaluated. The ZTE scans were compared to their Cartesian equivalent in terms of contrast, motion-sensitivity, diagnostic quality and patient comfort. All volunteers and especially the patients reported a more comfortable experience during the ZTE scans, which had at least a 10 dB lower sound pressure. The image contrast in the native ZTE was poor, but in the different magnetization-prepared ZTE, the eye lens, cornea and retina were clearly discriminated. Overall the T2-prepared scan yielded the best contrast, especially between tumor and healthy tissue, and proved to be robust against eye motion. Although the intrinsic 3D nature of the ZTE-technique provides an accurate analysis of the tumor morphology, the quality of the ZTE-images is lower than their Cartesian equivalent. In conclusion, the quality of magnetization-prepared ZTE images is sufficient to assess the 3D tumor morphology, but insufficient for more detailed evaluations. As such this technique can be an option for patients who cannot comply with the sound-levels of Cartesian scans, but for other patients the conventional Cartesian scans offer a better image quality.


Assuntos
Neoplasias Oculares/diagnóstico , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste/administração & dosagem , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Masculino , Melanoma/diagnóstico , Pessoa de Meia-Idade , Razão Sinal-Ruído , Neoplasias Uveais/diagnóstico
18.
Magn Reson Med ; 82(6): 2146-2159, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31321818

RESUMO

PURPOSE: To provide a simple tool for rapid measurement of the 3D gradient modulation transfer function (GMTF) of clinical MRI systems using a phantom. Knowledge of the transfer function is useful for gradient chain characterization, system calibration, and improvement of image reconstruction results. METHODS: Starting from the well-established thin slice method used for phantom-based measurement of the 1D GMTF, we add phase encoding to partition the thin slices into voxels that act as localized field probes. From the signal phase evolution measured at the 3D voxel positions, the GMTF can be derived for cross and higher order spatial terms represented by spherical harmonics up to 3rd order. RESULTS: Using spherical phantoms, 16 GMTFs representing all terms up to 3rd order harmonics can be determined in a scan time of <2 min. A large voxel volume of >1 mL yields high SNR, enabling signal acquisition using the system's body coil. The method is applied for improving system calibration and for characterizing the effect of additional hardware in the bore. CONCLUSION: The presented method seems well-suited for rapid measurement of the GMTF of a clinical system, as it delivers high-quality results in a short scan time.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Algoritmos , Calibragem , Humanos , Modelos Estatísticos , Imagens de Fantasmas , Razão Sinal-Ruído
19.
Magn Reson Med ; 81(1): 670-685, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30084505

RESUMO

PURPOSE: Design of a preconditioner for fast and efficient parallel imaging (PI) and compressed sensing (CS) reconstructions for Cartesian trajectories. THEORY: PI and CS reconstructions become time consuming when the problem size or the number of coils is large, due to the large linear system of equations that has to be solved in ℓ 1 and ℓ 2 -norm based reconstruction algorithms. Such linear systems can be solved efficiently using effective preconditioning techniques. METHODS: In this article we construct such a preconditioner by approximating the system matrix of the linear system, which comprises the data fidelity and includes total variation and wavelet regularization, by a matrix that is block circulant with circulant blocks. Due to this structure, the preconditioner can be constructed quickly and its inverse can be evaluated fast using only two fast Fourier transformations. We test the performance of the preconditioner for the conjugate gradient method as the linear solver, integrated into the well-established Split Bregman algorithm. RESULTS: The designed circulant preconditioner reduces the number of iterations required in the conjugate gradient method by almost a factor of 5. The speed up results in a total acceleration factor of approximately 2.5 for the entire reconstruction algorithm when implemented in MATLAB, while the initialization time of the preconditioner is negligible. CONCLUSION: The proposed preconditioner reduces the reconstruction time for PI and CS in a Split Bregman implementation without compromising reconstruction stability and can easily handle large systems since it is Fourier-based, allowing for efficient computations.


Assuntos
Compressão de Dados/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Análise de Fourier , Humanos , Modelos Lineares , Modelos Teóricos , Software , Coluna Vertebral/diagnóstico por imagem , Análise de Ondaletas
20.
Magn Reson Med ; 81(4): 2551-2565, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30421448

RESUMO

PURPOSE: To explore the feasibility of MR Fingerprinting (MRF) to rapidly quantify relaxation times in the human eye at 7T, and to provide a data acquisition and processing framework for future tissue characterization in eye tumor patients. METHODS: In this single-element receive coil MRF approach with Cartesian sampling, undersampling is used to shorten scan time and, therefore, to reduce the degree of motion artifacts. For reconstruction, approaches based on compressed sensing (CS) and matrix completion (MC) were used, while their effects on the quality of the MRF parameter maps were studied in simulations and experiments. Average relaxation times in the eye were measured in 6 healthy volunteers. One uveal melanoma patient was included to show the feasibility of MRF in a clinical context. RESULTS: Simulation results showed that an MC-based reconstruction enables large undersampling factors and also results in more accurate parameter maps compared with using CS. Experiments in 6 healthy volunteers used a reduction in scan time from 7:02 to 1:16 min, producing images without visible loss of detail in the parameter maps when using the MC-based reconstruction. Relaxation times from 6 healthy volunteers are in agreement with values obtained from fully sampled scans and values in literature, and parameter maps in a uveal melanoma patient show clear difference in relaxation times between tumor and healthy tissue. CONCLUSION: Cartesian-based MRF is feasible in the eye at 7T. High undersampling factors can be achieved by means of MC, significantly shortening scan time and increasing patient comfort, while also mitigating the risk of motion artifacts.


Assuntos
Compressão de Dados/métodos , Neoplasias Oculares/diagnóstico por imagem , Olho/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Melanoma/diagnóstico por imagem , Neoplasias Uveais/diagnóstico por imagem , Algoritmos , Artefatos , Simulação por Computador , Estudos de Viabilidade , Voluntários Saudáveis , Humanos , Movimento (Física) , Imagens de Fantasmas , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...