Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Med Hypotheses ; 132: 109318, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31421420

RESUMO

The artificial pancreas requires fast and reliable glucose measurements. The peritoneal space has shown promising results, and in one of our studies we detected glucose changes in the peritoneal space already at the same time as in the femoral artery. The peritoneal lining is highly vascularised, covered by a single layer of mesothelial cells and therefore easily accessible for proper sensor technology, e.g. optical technology. We hypothesize that the rapid intraperitoneal glucose dynamics observed in our study was possible because the sensors were located directly at the peritoneal lining, at the point where the glucose molecules entered the peritoneal space. Glucose travels slowly in fluids by diffusion, and a longer distance between the sensor and the peritoneal lining would consequently result in slower dynamics. We therefore propose to place the glucose sensor in an artificial pancreas as closely to the peritoneal lining as possible, or even utilize appropriate sensor technology to measure glucose in the peritoneal lining itself.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/terapia , Glucose/análise , Pâncreas Artificial , Diálise Peritoneal/métodos , Peritônio/irrigação sanguínea , Peritônio/metabolismo , Animais , Técnicas Biossensoriais , Difusão , Epitélio , Desenho de Equipamento , Artéria Femoral/metabolismo , Humanos , Dispositivos Ópticos , Suínos
3.
PLoS One ; 13(10): e0205447, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30300416

RESUMO

BACKGROUND: In diabetes research, the development of the artificial pancreas has been a major topic since continuous glucose monitoring became available in the early 2000's. A prerequisite for an artificial pancreas is fast and reliable glucose sensing. However, subcutaneous continuous glucose monitoring carries the disadvantage of slow dynamics. As an alternative, we explored continuous glucose sensing in the peritoneal space, and investigated potential spatial differences in glucose dynamics within the peritoneal cavity. As a secondary outcome, we compared the glucose dynamics in the peritoneal space to the subcutaneous tissue. MATERIAL AND METHODS: Eight-hour experiments were conducted on 12 anesthetised non-diabetic pigs. Four commercially available amperometric glucose sensors (FreeStyle Libre, Abbott Diabetes Care Ltd., Witney, UK) were inserted in four different locations of the peritoneal cavity and two sensors were inserted in the subcutaneous tissue. Meals were simulated by intravenous infusions of glucose, and frequent arterial blood and intraperitoneal fluid samples were collected for glucose reference. RESULTS: No significant differences were discovered in glucose dynamics between the four quadrants of the peritoneal cavity. The intraperitoneal sensors responded faster to the glucose excursions than the subcutaneous sensors, and the time delay was significantly smaller for the intraperitoneal sensors, but we did not find significant results when comparing the other dynamic parameters.


Assuntos
Técnicas Eletroquímicas , Glucose/análise , Tela Subcutânea , Administração Intravenosa , Animais , Técnicas Biossensoriais/métodos , Glicemia/análise , Eletrodos , Feminino , Glucose/administração & dosagem , Masculino , Modelos Animais , Cavidade Peritoneal , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...