Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 19(1): 68-77, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34965182

RESUMO

DNA double-strand breaks are among the most toxic lesions that can occur in a genome and their faithful repair is thus of great importance. Recent findings have uncovered local transcription that initiates at the break and forms a non-coding transcript, called damage-induced long non-coding RNA (dilncRNA), which helps to coordinate the DNA transactions necessary for repair. We provide nascent RNA sequencing-based evidence that RNA polymerase II transcribes the dilncRNA in Drosophila and that this is more efficient for DNA breaks in an intron-containing gene, consistent with the higher damage-induced siRNA levels downstream of an intron. The spliceosome thus stimulates recruitment of RNA polymerase II to the break, rather than merely promoting the annealing of sense and antisense RNA to form the siRNA precursor. In contrast, RNA polymerase III nascent RNA libraries did not contain reads corresponding to the cleaved loci and selective inhibition of RNA polymerase III did not reduce the yield of damage-induced siRNAs. Finally, the damage-induced siRNA density was unchanged downstream of a T8 sequence, which terminates RNA polymerase III transcription. We thus found no evidence for a participation of RNA polymerase III in dilncRNA transcription in cultured Drosophila cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Drosophila/genética , Drosophila/metabolismo , RNA Polimerase II/metabolismo , RNA Longo não Codificante/genética , Transcrição Gênica , Animais , Reparo do DNA , Regulação da Expressão Gênica , Íntrons , Ligação Proteica , RNA Polimerase III/metabolismo , Splicing de RNA , RNA Interferente Pequeno/genética , Análise de Sequência de DNA
2.
Nucleic Acids Res ; 45(21): 12536-12550, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040648

RESUMO

RNA interference defends against RNA viruses and retro-elements within an organism's genome. It is triggered by duplex siRNAs, of which one strand is selected to confer sequence-specificity to the RNA induced silencing complex (RISC). In Drosophila, Dicer-2 (Dcr-2) and the double-stranded RNA binding domain (dsRBD) protein R2D2 form the RISC loading complex (RLC) and select one strand of exogenous siRNAs according to the relative thermodynamic stability of base-pairing at either end. Through genome editing we demonstrate that Loqs-PD, the Drosophila homolog of human TAR RNA binding protein (TRBP) and a paralog of R2D2, forms an alternative RLC with Dcr-2 that is required for strand choice of endogenous siRNAs in S2 cells. Two canonical dsRBDs in Loqs-PD bind to siRNAs with enhanced affinity compared to miRNA/miRNA* duplexes. Structural analysis, NMR and biophysical experiments indicate that the Loqs-PD dsRBDs can slide along the RNA duplex to the ends of the siRNA. A moderate but notable binding preference for the thermodynamically more stable siRNA end by Loqs-PD alone is greatly amplified in complex with Dcr-2 to initiate strand discrimination by asymmetry sensing in the RLC.


Assuntos
Proteínas de Drosophila/metabolismo , RNA Helicases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo , Animais , Proteínas Argonautas/metabolismo , Células Cultivadas , Drosophila/metabolismo , Ligação Proteica , Domínios Proteicos , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/química , Proteínas de Ligação a RNA/química , Termodinâmica
3.
PLoS Genet ; 13(6): e1006861, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28628606

RESUMO

DNA double-strand breaks trigger the production of locus-derived siRNAs in fruit flies, human cells and plants. At least in flies, their biogenesis depends on active transcription running towards the break. Since siRNAs derive from a double-stranded RNA precursor, a major question is how broken DNA ends can generate matching sense and antisense transcripts. We performed a genome-wide RNAi-screen in cultured Drosophila cells, which revealed that in addition to DNA repair factors, many spliceosome components are required for efficient siRNA generation. We validated this observation through site-specific DNA cleavage with CRISPR-cas9 followed by deep sequencing of small RNAs. DNA breaks in intron-less genes or upstream of a gene's first intron did not efficiently trigger siRNA production. When DNA double-strand breaks were induced downstream of an intron, however, this led to robust siRNA generation. Furthermore, a downstream break slowed down splicing of the upstream intron and a detailed analysis of siRNA coverage at the targeted locus revealed that unspliced pre-mRNA contributes the sense strand to the siRNA precursor. Since splicing factors are stimulating the response but unspliced transcripts are entering the siRNA biogenesis, the spliceosome is apparently stalled in a pre-catalytic state and serves as a signaling hub. We conclude that convergent transcription at DNA breaks is stimulated by a splicing dependent control process. The resulting double-stranded RNA is converted into siRNAs that instruct the degradation of cognate mRNAs. In addition to a potential role in DNA repair, the break-induced transcription may thus be a means to cull improper RNAs from the transcriptome of Drosophila melanogaster. Since the splicing factors identified in our screen also stimulated siRNA production from high copy transgenes, it is possible that this surveillance mechanism serves in genome defense beyond DNA double-strand breaks.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Splicing de RNA/genética , Transcrição Gênica , Animais , Sistemas CRISPR-Cas , Drosophila melanogaster/genética , Genoma de Inseto , Íntrons/genética , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/genética
4.
Nucleic Acids Res ; 44(17): 8261-71, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27353331

RESUMO

Small interfering RNAs (siRNAs) defend the organism against harmful transcripts from exogenous (e.g. viral) or endogenous (e.g. transposons) sources. Recent publications describe the production of siRNAs induced by DNA double-strand breaks (DSB) in Neurospora crassa, Arabidopsis thaliana, Drosophila melanogaster and human cells, which suggests a conserved function. A current hypothesis is that break-induced small RNAs ensure efficient homologous recombination (HR). However, biogenesis of siRNAs is often intertwined with other small RNA species, such as microRNAs (miRNAs), which complicates interpretation of experimental results. In Drosophila, siRNAs are produced by Dcr-2 while miRNAs are processed by Dcr-1. Thus, it is possible to probe siRNA function without miRNA deregulation. We therefore examined DNA double-strand break repair after perturbation of siRNA biogenesis in cultured Drosophila cells as well as mutant flies. Our assays comprised reporters for the single-strand annealing pathway, homologous recombination and sensitivity to the DSB-inducing drug camptothecin. We could not detect any repair defects caused by the lack of siRNAs derived from the broken DNA locus. Since production of these siRNAs depends on local transcription, they may thus participate in RNA metabolism-an established function of siRNAs-rather than DNA repair.


Assuntos
Drosophila melanogaster/genética , RNA Interferente Pequeno/metabolismo , Reparo de DNA por Recombinação , Animais , Proteínas Argonautas/metabolismo , Camptotecina/farmacologia , Cromossomos de Insetos/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Edição de Genes , Técnicas de Silenciamento de Genes , Genes Reporter , Mutação/genética , Reparo de DNA por Recombinação/efeitos dos fármacos , Zigoto/metabolismo
5.
G3 (Bethesda) ; 6(6): 1777-85, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27172193

RESUMO

Custom genome editing has become an essential element of molecular biology. In particular, the generation of fusion constructs with epitope tags or fluorescent proteins at the genomic locus facilitates the analysis of protein expression, localization, and interaction partners at physiologic levels. Following up on our initial publication, we now describe a considerably simplified, more efficient, and readily scalable experimental workflow for PCR-based genome editing in cultured Drosophila melanogaster cells. Our analysis at the act5C locus suggests that PCR-based homology arms of 60 bp are sufficient to reach targeting efficiencies of up to 80% after selection; extension to 80 bp (PCR) or 500 bp (targeting vector) did not further improve the yield. We have expanded our targeting system to N-terminal epitope tags; this also allows the generation of cell populations with heterologous expression control of the tagged locus via the copper-inducible mtnDE promoter. We present detailed, quantitative data on editing efficiencies for several genomic loci that may serve as positive controls or benchmarks in other laboratories. While our first PCR-based editing approach offered only blasticidin-resistance for selection, we now introduce puromycin-resistance as a second, independent selection marker; it is thus possible to edit two loci (e.g., for coimmunoprecipitation) without marker removal. Finally, we describe a modified FLP recombinase expression plasmid that improves the efficiency of marker cassette FLP-out. In summary, our technique and reagents enable a flexible, robust, and cloning-free genome editing approach that can be parallelized for scale-up.


Assuntos
Drosophila melanogaster/genética , Edição de Genes , Genoma , Genômica , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Linhagem Celular , Proteínas de Drosophila/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Marcação de Genes/métodos , Genes Reporter , Loci Gênicos , Vetores Genéticos/genética , Genômica/métodos , Recombinação Homóloga
6.
Nucleic Acids Res ; 42(11): e89, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24748663

RESUMO

The ability to edit the genome is essential for many state-of-the-art experimental paradigms. Since DNA breaks stimulate repair, they can be exploited to target site-specific integration. The clustered, regularly interspaced, short palindromic repeats (CRISPR)/cas9 system from Streptococcus pyogenes has been harnessed into an efficient and programmable nuclease for eukaryotic cells. We thus combined DNA cleavage by cas9, the generation of homologous recombination donors by polymerase chain reaction (PCR) and transient depletion of the non-homologous end joining factor lig4. Using cultured Drosophila melanogaster S2-cells and the phosphoglycerate kinase gene as a model, we reached targeted integration frequencies of up to 50% in drug-selected cell populations. Homology arms as short as 29 nt appended to the PCR primer resulted in detectable integration, slightly longer extensions are beneficial. We confirmed established rules for S. pyogenes cas9 sgRNA design and demonstrate that the complementarity region allows length variation and 5'-extensions. This enables generation of U6-promoter fusion templates by overlap-extension PCR with a standardized protocol. We present a series of PCR template vectors for C-terminal protein tagging and clonal Drosophila S2 cell lines with stable expression of a myc-tagged cas9 protein. The system can be used for epitope tagging or reporter gene knock-ins in an experimental setup that can in principle be fully automated.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Desoxirribonucleases/metabolismo , Recombinação Homóloga , Reação em Cadeia da Polimerase , Animais , Linhagem Celular , Cromossomos de Insetos , Clivagem do DNA , Drosophila melanogaster/citologia , Mutação Puntual , Regiões Promotoras Genéticas , RNA Nuclear Pequeno/genética , Streptococcus pyogenes/enzimologia , Pequeno RNA não Traduzido
7.
Nucleic Acids Res ; 40(19): 9596-603, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22848104

RESUMO

Small RNAs have been implicated in numerous cellular processes, including effects on chromatin structure and the repression of transposons. We describe the generation of a small RNA response at DNA ends in Drosophila that is analogous to the recently reported double-strand break (DSB)-induced RNAs or Dicer- and Drosha-dependent small RNAs in Arabidopsis and vertebrates. Active transcription in the vicinity of the break amplifies this small RNA response, demonstrating that the normal messenger RNA contributes to the endogenous small interfering RNAs precursor. The double-stranded RNA precursor forms with an antisense transcript that initiates at the DNA break. Breaks are thus sites of transcription initiation, a novel aspect of the cellular DSB response. This response is specific to a double-strand break since nicked DNA structures do not trigger small RNA production. The small RNAs are generated independently of the exact end structure (blunt, 3'- or 5'-overhang), can repress homologous sequences in trans and may therefore--in addition to putative roles in repair--exert a quality control function by clearing potentially truncated messages from genes in the vicinity of the break.


Assuntos
Quebras de DNA de Cadeia Dupla , Drosophila/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Animais , Células Cultivadas , DNA/metabolismo , Quebras de DNA de Cadeia Simples , Reparo do DNA , RNA Interferente Pequeno/biossíntese , Transcrição Gênica
8.
EMBO J ; 28(19): 2932-44, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19644447

RESUMO

Colonization of genomes by a new selfish genetic element is detrimental to the host species and must lead to an efficient, repressive response. In vertebrates as well as in Drosophila, piRNAs repress transposons in the germ line, whereas endogenous siRNAs take on this role in somatic cells. We show that their biogenesis depends on a new isoform of the Drosophila TRBP homologue loquacious, which arises by alternative polyadenylation and is distinct from the one that functions during the biogenesis of miRNAs. For endo-siRNAs and piRNAs, it is unclear how an efficient response can be initiated de novo. Our experiments establish that the endo-siRNA pathway will target artificially introduced sequences without the need for a pre-existing template in the genome. This response is also triggered in transiently transfected cells, thus genomic integration is not essential. Deep sequencing showed that corresponding endo-siRNAs are generated throughout the sequence, but preferentially from transcribed regions. One strand of the dsRNA precursor can come from spliced mRNA, whereas the opposite strand derives from independent transcripts in antisense orientation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Drosophila melanogaster/metabolismo , Proteínas de Fluorescência Verde/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Splicing de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/metabolismo , Transfecção , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...