Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(6): 112569, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37256750

RESUMO

Long non-coding RNAs (lncRNAs) are implicated in a plethora of cellular processes, but an in-depth understanding of their functional features or their mechanisms of action is currently lacking. Here we study Meteor, a lncRNA transcribed near the gene encoding EOMES, a pleiotropic transcription factor implicated in various processes throughout development and in adult tissues. Using a wide array of perturbation techniques, we show that transcription elongation through the Meteor locus is required for Eomes activation in mouse embryonic stem cells, with Meteor repression linked to a change in the subpopulation primed to differentiate to the mesoderm lineage. We further demonstrate that a distinct functional feature of the locus-namely, the underlying DNA element-is required for suppressing Eomes expression following neuronal differentiation. Our results demonstrate the complex regulation that can be conferred by a single locus and emphasize the importance of careful selection of perturbation techniques when studying lncRNA loci.


Assuntos
RNA Longo não Codificante , Proteínas com Domínio T , Animais , Camundongos , Diferenciação Celular/genética , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo
2.
RNA ; 29(8): 1140-1165, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37137667

RESUMO

Removal of introns during pre-mRNA splicing, which is central to gene expression, initiates by base pairing of U1 snRNA with a 5' splice site (5'SS). In mammals, many introns contain weak 5'SSs that are not efficiently recognized by the canonical U1 snRNP, suggesting alternative mechanisms exist. Here, we develop a cross-linking immunoprecipitation coupled to a high-throughput sequencing method, BCLIP-seq, to identify NRDE2 (nuclear RNAi-defective 2), and CCDC174 (coiled-coil domain-containing 174) as novel RNA-binding proteins in mouse ES cells that associate with U1 snRNA and 5'SSs. Both proteins bind directly to U1 snRNA independently of canonical U1 snRNP-specific proteins, and they are required for the selection and effective processing of weak 5'SSs. Our results reveal that mammalian cells use noncanonical splicing factors bound directly to U1 snRNA to effectively select suboptimal 5'SS sequences in hundreds of genes, promoting proper splice site choice, and accurate pre-mRNA splicing.


Assuntos
Precursores de RNA , Sítios de Splice de RNA , Animais , Camundongos , Sítios de Splice de RNA/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Interferência de RNA , Splicing de RNA , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Processamento Alternativo , Mamíferos/genética
3.
EMBO Rep ; 24(1): e55928, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36408846

RESUMO

Methylation of histone H3 at lysine 9 (H3K9) is a hallmark of heterochromatin that plays crucial roles in gene silencing, genome stability, and chromosome segregation. In Schizosaccharomyces pombe, Clr4 mediates both di- and tri-methylation of H3K9. Although H3K9 methylation has been intensely studied in mitotic cells, its role during sexual differentiation remains unclear. Here, we map H3K9 methylation genome-wide during meiosis and show that constitutive heterochromatin temporarily loses H3K9me2 and becomes H3K9me3 when cells commit to meiosis. Cells lacking the ability to tri-methylate H3K9 exhibit meiotic chromosome segregation defects. Finally, the H3K9 methylation switch is accompanied by differential phosphorylation of Clr4 by the cyclin-dependent kinase Cdk1. Our results suggest that a conserved master regulator of the cell cycle controls the specificity of an H3K9 methyltransferase to prevent ectopic H3K9 methylation and to ensure faithful gametogenesis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Metilação , Histonas/genética , Histonas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fosforilação , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Gametogênese/genética
4.
PLoS Genet ; 17(6): e1009645, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34157021

RESUMO

Small non-protein coding RNAs are involved in pathways that control the genome at the level of chromatin. In Schizosaccharomyces pombe, small interfering RNAs (siRNAs) are required for the faithful propagation of heterochromatin that is found at peri-centromeric repeats. In contrast to repetitive DNA, protein-coding genes are refractory to siRNA-mediated heterochromatin formation, unless siRNAs are expressed in mutant cells. Here we report the identification of 20 novel mutant alleles that enable de novo formation of heterochromatin at a euchromatic protein-coding gene by using trans-acting siRNAs as triggers. For example, a single amino acid substitution in the pre-mRNA cleavage factor Yth1 enables siRNAs to trigger silent chromatin formation with unparalleled efficiency. Our results are consistent with a kinetic nascent transcript processing model for the inhibition of small-RNA-directed de novo formation of heterochromatin and lay a foundation for further mechanistic dissection of cellular activities that counteract epigenetic gene silencing.


Assuntos
Regulação Fúngica da Expressão Gênica , Inativação Gênica , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Schizosaccharomyces/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Alelos , Substituição de Aminoácidos , Centrômero/química , Centrômero/metabolismo , Montagem e Desmontagem da Cromatina , Perfilação da Expressão Gênica , Heterocromatina/química , Heterocromatina/metabolismo , Cinética , Modelos Genéticos , Anotação de Sequência Molecular , Mutação , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
5.
Nucleic Acids Res ; 49(10): 5568-5587, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33999208

RESUMO

Heterochromatin has essential functions in maintaining chromosome structure, in protecting genome integrity and in stabilizing gene expression programs. Heterochromatin is often nucleated by underlying DNA repeat sequences, such as major satellite repeats (MSR) and long interspersed nuclear elements (LINE). In order to establish heterochromatin, MSR and LINE elements need to be transcriptionally competent and generate non-coding repeat RNA that remain chromatin associated. We explored whether these heterochromatic RNA, similar to DNA and histones, may be methylated, particularly for 5-methylcytosine (5mC) or methyl-6-adenosine (m6A). Our analysis in mouse ES cells identifies only background level of 5mC but significant enrichment for m6A on heterochromatic RNA. Moreover, MSR transcripts are a novel target for m6A RNA modification, and their m6A RNA enrichment is decreased in ES cells that are mutant for Mettl3 or Mettl14, which encode components of a central RNA methyltransferase complex. Importantly, MSR transcripts that are partially deficient in m6A RNA methylation display impaired chromatin association and have a reduced potential to form RNA:DNA hybrids. We propose that m6A modification of MSR RNA will enhance the functions of MSR repeat transcripts to stabilize mouse heterochromatin.


Assuntos
DNA/metabolismo , Heterocromatina , RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Metilação , Camundongos , Células-Tronco Embrionárias Murinas , Sequências de Repetição em Tandem
6.
Methods Mol Biol ; 2167: 287-301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32712926

RESUMO

Some long non-coding RNA (lncRNA) genes encode a functional RNA product, whereas others act as DNA elements or via the act of transcription . We describe here a ribozyme-based approach to deplete an endogenous lncRNA in mouse embryonic stem cells, with minimal disruption of its gene. This enables the role of the lncRNA product to be tested.


Assuntos
Células-Tronco Embrionárias/metabolismo , Edição de Genes/métodos , RNA Catalítico/genética , RNA Longo não Codificante/genética , RNA Viral/genética , Animais , Sistemas CRISPR-Cas , Células-Tronco Embrionárias/enzimologia , Camundongos , Conformação de Ácido Nucleico , RNA Catalítico/metabolismo , RNA Longo não Codificante/metabolismo , Recombinação Genética
8.
Nat Struct Mol Biol ; 27(9): 870, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32788692

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Biol Open ; 9(6)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32487517

RESUMO

Adenine auxotrophy is a commonly used non-selective genetic marker in yeast research. It allows investigators to easily visualize and quantify various genetic and epigenetic events by simply reading out colony color. However, manual counting of large numbers of colonies is extremely time-consuming, difficult to reproduce and possibly inaccurate. Using cutting-edge neural networks, we have developed a fully automated pipeline for colony segmentation and classification, which speeds up white/red colony quantification 100-fold over manual counting by an experienced researcher. Our approach uses readily available training data and can be smoothly integrated into existing protocols, vastly speeding up screening assays and increasing the statistical power of experiments that employ adenine auxotrophy.


Assuntos
Contagem de Colônia Microbiana/métodos , Aprendizado Profundo , Ensaios de Triagem em Larga Escala , Contagem de Colônia Microbiana/normas , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Leveduras
10.
Mol Cell ; 77(6): 1222-1236.e13, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32048998

RESUMO

RNA decay is crucial for mRNA turnover and surveillance and misregulated in many diseases. This complex system is challenging to study, particularly in mammals, where it remains unclear whether decay pathways perform specialized versus redundant roles. Cytoplasmic pathways and links to translation are particularly enigmatic. By directly profiling decay factor targets and normal versus aberrant translation in mouse embryonic stem cells (mESCs), we uncovered extensive decay pathway specialization and crosstalk with translation. XRN1 (5'-3') mediates cytoplasmic bulk mRNA turnover whereas SKIV2L (3'-5') is universally recruited by ribosomes, tackling aberrant translation and sometimes modulating mRNA abundance. Further exploring translation surveillance revealed AVEN and FOCAD as SKIV2L interactors. AVEN prevents ribosome stalls at structured regions, which otherwise require SKIV2L for clearance. This pathway is crucial for histone translation, upstream open reading frame (uORF) regulation, and counteracting ribosome arrest on small ORFs. In summary, we uncovered key targets, components, and functions of mammalian RNA decay pathways and extensive coupling to translation.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação a DNA/fisiologia , Exorribonucleases/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Biossíntese de Proteínas , RNA Helicases/fisiologia , Estabilidade de RNA , RNA Mensageiro/metabolismo , Animais , Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Fases de Leitura Aberta , Proteínas Proto-Oncogênicas/fisiologia , RNA Mensageiro/química , RNA Mensageiro/genética , Ribossomos/genética , Ribossomos/metabolismo
11.
Trends Genet ; 36(3): 203-214, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31952840

RESUMO

In recent years it has become evident that RNA interference-related mechanisms can mediate the deposition and transgenerational inheritance of specific chromatin modifications in a truly epigenetic fashion. Rapid progress has been made in identifying the RNAi effector proteins and how they work together to confer long-lasting epigenetic responses, and initial studies hint at potential physiological relevance of such regulation. In this review, we highlight mechanistic studies in model organisms that advance our understanding of how small RNAs trigger long-lasting epigenetic changes in gene expression and we discuss observations that lend support for the idea that small RNAs might participate in mechanisms that trigger epigenetic gene expression changes in response to environmental cues and the effects these could have on population adaptation.


Assuntos
Epigênese Genética/genética , Evolução Molecular , Interação Gene-Ambiente , RNA/genética , Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica/genética , Inativação Gênica , Interferência de RNA , Transdução de Sinais/genética
12.
Cell ; 178(6): 1437-1451.e14, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491387

RESUMO

CCCTC-binding factor (CTCF) and cohesin are key players in three-dimensional chromatin organization. The topologically associating domains (TADs) demarcated by CTCF are remarkably well conserved between species, although genome-wide CTCF binding has diverged substantially following transposon-mediated motif expansions. Therefore, the CTCF consensus motif poorly predicts TADs, and additional factors must modulate CTCF binding and subsequent TAD formation. Here, we demonstrate that the ChAHP complex (CHD4, ADNP, HP1) competes with CTCF for a common set of binding motifs. In Adnp knockout cells, novel insulated regions are formed at sites normally bound by ChAHP, whereas proximal canonical boundaries are weakened. These data reveal that CTCF-mediated loop formation is modulated by a distinct zinc-finger protein complex. Strikingly, ChAHP-bound loci are mainly situated within less diverged SINE B2 transposable elements. This implicates ChAHP in maintenance of evolutionarily conserved spatial chromatin organization by buffering novel CTCF binding sites that emerged through SINE expansions.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Retroelementos , Animais , Sítios de Ligação , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Células-Tronco Embrionárias/citologia , Camundongos , Ligação Proteica , Domínios Proteicos
13.
Genes Dev ; 33(17-18): 1221-1235, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371437

RESUMO

TRIM71/LIN-41, a phylogenetically conserved regulator of development, controls stem cell fates. Mammalian TRIM71 exhibits both RNA-binding and protein ubiquitylation activities, but the functional contribution of either activity and relevant primary targets remain poorly understood. Here, we demonstrate that TRIM71 shapes the transcriptome of mouse embryonic stem cells (mESCs) predominantly through its RNA-binding activity. We reveal that TRIM71 binds targets through 3' untranslated region (UTR) hairpin motifs and that it acts predominantly by target degradation. TRIM71 mutations implicated in etiogenesis of human congenital hydrocephalus impair target silencing. We identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1 (Muscleblind-like protein 1). MBNL1 promotes cell differentiation through regulation of alternative splicing, and we demonstrate that TRIM71 promotes embryonic splicing patterns through MBNL1 repression. Hence, repression of MBNL1-dependent alternative splicing may contribute to TRIM71's function in regulating stem cell fates.


Assuntos
Processamento Alternativo/genética , Regulação da Expressão Gênica/genética , Proteínas de Ligação a RNA/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular Tumoral , Células-Tronco Embrionárias , Humanos , Camundongos , Camundongos Knockout , Mutação , Motivos de Nucleotídeos , Ligação Proteica , Domínios Proteicos/genética , Interferência de RNA , Proteínas de Ligação a RNA/metabolismo
14.
Mol Cell ; 74(3): 534-541.e4, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30898439

RESUMO

Small RNAs trigger the formation of epialleles that are silenced across generations. Consequently, RNA-directed epimutagenesis is associated with persistent gene repression. Here, we demonstrate that small interfering RNA-induced epimutations in fission yeast are still inherited even when the silenced gene is reactivated, and descendants can reinstate the silencing phenotype that only occurred in their ancestors. This process is mediated by the deposition of a phenotypically neutral molecular mark composed of tri-methylated histone H3 lysine 9 (H3K9me3). Its stable propagation is coupled to RNAi and requires maximal binding affinity of the Clr4/Suvar39 chromodomain to H3K9me3. In wild-type cells, this mark has no visible impact on transcription but causes gene silencing if RNA polymerase-associated factor 1 complex (Paf1C) activity is impaired. In sum, our results reveal a distinct form of epigenetic memory in which cells acquire heritable, transcriptionally active epialleles that confer gene silencing upon modulation of Paf1C.


Assuntos
Inativação Gênica , Heterocromatina/genética , Histonas/genética , Proteínas Nucleares/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ciclo Celular/genética , Epigênese Genética , Histona-Lisina N-Metiltransferase , Metilação , Metiltransferases/genética , Mutação/genética , Interferência de RNA , Schizosaccharomyces/genética
15.
Life Sci Alliance ; 1(4): e201800124, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30456373

RESUMO

Eukaryotic genomes produce RNAs lacking protein-coding potential, with enigmatic roles. We integrated three approaches to study large intervening noncoding RNA (lincRNA) gene functions. First, we profiled mouse embryonic stem cells and neural precursor cells at single-cell resolution, revealing lincRNAs expressed in specific cell types, cell subpopulations, or cell cycle stages. Second, we assembled a transcriptome-wide atlas of nuclear lincRNA degradation by identifying targets of the exosome cofactor Mtr4. Third, we developed a reversible depletion system to separate the role of a lincRNA gene from that of its RNA. Our approach distinguished lincRNA loci functioning in trans from those modulating local gene expression. Some genes express stable and/or abundant lincRNAs in single cells, but many prematurely terminate transcription and produce lincRNAs rapidly degraded by the nuclear exosome. This suggests that besides RNA-dependent functions, lincRNA loci act as DNA elements or through transcription. Our integrative approach helps distinguish these mechanisms.

16.
FEBS Lett ; 592(17): 2845-2859, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29782652

RESUMO

Multiple lines of evidence suggest the RNA modification N6 -methyladonsine (m6 A), which is installed in the nucleus cotranscriptionally and, thereafter, serves as a reversible chemical imprint that influences several steps of mRNA metabolism. This includes but is not limited to RNA folding, splicing, stability, transport and translation. In this Review we focus on the current view of the nuclear installation of m6 A as well as the molecular players involved, the so called m6 A writers. We also explore the effector proteins, or m6 A readers, that decode the imprint in different cellular contexts and compartments, and ultimately, the way the modification influences the lifecycle of an RNA molecule. The wide evolutionary conservation of m6 A and its critical role in physiology and disease warrants further studies into this burgeoning and exciting field.


Assuntos
Adenosina/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Núcleo Celular , Humanos , Metilação , Biossíntese de Proteínas , Dobramento de RNA , Estabilidade de RNA
17.
Nature ; 557(7707): 739-743, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29795351

RESUMO

De novo mutations in ADNP, which encodes activity-dependent neuroprotective protein (ADNP), have recently been found to underlie Helsmoortel-Van der Aa syndrome, a complex neurological developmental disorder that also affects several other organ functions 1 . ADNP is a putative transcription factor that is essential for embryonic development 2 . However, its precise roles in transcriptional regulation and development are not understood. Here we show that ADNP interacts with the chromatin remodeller CHD4 and the chromatin architectural protein HP1 to form a stable complex, which we refer to as ChAHP. Besides mediating complex assembly, ADNP recognizes DNA motifs that specify binding of ChAHP to euchromatin. Genetic ablation of ChAHP components in mouse embryonic stem cells results in spontaneous differentiation concomitant with premature activation of lineage-specific genes and in a failure to differentiate towards the neuronal lineage. Molecularly, ChAHP-mediated repression is fundamentally different from canonical HP1-mediated silencing: HP1 proteins, in conjunction with histone H3 lysine 9 trimethylation (H3K9me3), are thought to assemble broad heterochromatin domains that are refractory to transcription. ChAHP-mediated repression, however, acts in a locally restricted manner by establishing inaccessible chromatin around its DNA-binding sites and does not depend on H3K9me3-modified nucleosomes. Together, our results reveal that ADNP, via the recruitment of HP1 and CHD4, regulates the expression of genes that are crucial for maintaining distinct cellular states and assures accurate cell fate decisions upon external cues. Such a general role of ChAHP in governing cell fate plasticity may explain why ADNP mutations affect several organs and body functions and contribute to cancer progression1,3,4. Notably, we found that the integrity of the ChAHP complex is disrupted by nonsense mutations identified in patients with Helsmoortel-Van der Aa syndrome, and this could be rescued by aminoglycosides that suppress translation termination 5 . Therefore, patients might benefit from therapeutic agents that are being developed to promote ribosomal read-through of premature stop codons6,7.


Assuntos
Linhagem da Célula/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Homólogo 5 da Proteína Cromobox , Eucromatina/genética , Eucromatina/metabolismo , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Nucleossomos/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Transcrição Gênica
18.
Genes Dev ; 32(5-6): 415-429, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29535189

RESUMO

N6-methyladenosine (m6A) is the most abundant mRNA modification in eukaryotes, playing crucial roles in multiple biological processes. m6A is catalyzed by the activity of methyltransferase-like 3 (Mettl3), which depends on additional proteins whose precise functions remain poorly understood. Here we identified Zc3h13 (zinc finger CCCH domain-containing protein 13)/Flacc [Fl(2)d-associated complex component] as a novel interactor of m6A methyltransferase complex components in Drosophila and mice. Like other components of this complex, Flacc controls m6A levels and is involved in sex determination in Drosophila We demonstrate that Flacc promotes m6A deposition by bridging Fl(2)d to the mRNA-binding factor Nito. Altogether, our work advances the molecular understanding of conservation and regulation of the m6A machinery.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/fisiologia , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Metilação , Camundongos , Células-Tronco Embrionárias Murinas , Transporte Proteico , Precursores de RNA/genética , Splicing de RNA , Fatores de Processamento de RNA , Processos de Determinação Sexual/genética
19.
Genes Dev ; 31(21): 2115-2120, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212661

RESUMO

Epigenetic maintenance of gene repression is essential for development. Polycomb complexes are central to this memory, but many aspects of the underlying mechanism remain unclear. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) binds Polycomb-deposited H3K27me3 and is required for repression of many Polycomb target genes in Arabidopsis Here we show that LHP1 binds RNA in vitro through the intrinsically disordered hinge region. By independently perturbing the RNA-binding hinge region and H3K27me3 (trimethylation of histone H3 at Lys27) recognition, we found that both facilitate LHP1 localization and H3K27me3 maintenance. Disruption of the RNA-binding hinge region also prevented formation of subnuclear foci, structures potentially important for epigenetic repression.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Cromossômicas não Histona/metabolismo , Repressão Epigenética/genética , Proteínas Cromossômicas não Histona/genética , Regulação da Expressão Gênica de Plantas/genética , Histonas/metabolismo , Mutação/genética , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Motivos de Ligação ao RNA/genética
20.
Nat Struct Mol Biol ; 24(7): 561-569, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28581511

RESUMO

Eukaryotic gene expression is heavily regulated at the transcriptional and post-transcriptional levels. An additional layer of regulation occurs co-transcriptionally through processing and decay of nascent transcripts physically associated with chromatin. This process involves RNA interference (RNAi) machinery and is well documented in yeast, but little is known about its conservation in mammals. Here we show that Dgcr8 and Drosha physically associate with chromatin in murine embryonic stem cells (mES), specifically with a subset of transcribed coding and noncoding genes. Dgcr8 recruitment to chromatin is dependent on transcription as well as methyltransferase-like 3 (Mettl3), which catalyzes RNA N6-methyladenosine (m6A). Intriguingly, we found that acute temperature stress causes radical relocalization of Dgcr8 and Mettl3 to heat-shock genes, where they act to co-transcriptionally mark mRNAs for subsequent RNA degradation. Together, our findings elucidate a novel mode of co-transcriptional gene regulation, in which m6A serves as a chemical mark that instigates subsequent post-transcriptional RNA-processing events.


Assuntos
Adenosina/metabolismo , Regulação da Expressão Gênica , Estabilidade de RNA , RNA/metabolismo , Transcrição Gênica , Animais , Cromatina/metabolismo , Metilação , Metiltransferases/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...