Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(32): e2207081120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523550

RESUMO

We assess wheat yield losses occurring due to ozone pollution in India and its economic burden on producers, consumers, and the government. Applying an ozone flux-based risk assessment, we show that ambient ozone levels caused a mean 14.18% reduction in wheat yields during 2008 to 2012. Furthermore, irrigated wheat was particularly sensitive to ozone-induced yield losses, indicating that ozone pollution could undermine climate-change adaptation efforts through irrigation expansion. Applying an economic model, we examine the effects of a counterfactual, "pollution-free" scenario on yield losses, wheat prices, consumer and producer welfare, and government costs. We explore three policy scenarios in which the government support farmers at observed levels of either procurement prices (fixed-price), procurement quantities (fixed-procurement), or procurement expenditure (fixed-expenditure). In pollution-free conditions, the fixed-price scenario absorbs the fall in prices, thus increasing producer welfare by USD 2.7 billion, but total welfare decreases by USD 0.24 billion as government costs increase (USD 2.9 billion). In the fixed-procurement and fixed-expenditure scenarios, ozone mitigation allows wheat prices to fall by 38.19 to 42.96%. The producers lose by USD 5.10 to 6.01 billion, but the gains to consumers and governments (USD 8.7 to 10.2 billion) outweigh these losses. These findings show that the government and consumers primarily bear the costs of ozone pollution. For pollution mitigation to optimally benefit wheat production and maximize social welfare, new approaches to support producers other than fixed-price grain procurement may be required. We also emphasize the need to consider air pollution in programs to improve agricultural resilience to climate change.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Humanos , Ozônio/análise , Triticum , Poluentes Atmosféricos/análise , Governo
2.
Sustain Sci ; 18(3): 1429-1444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124120

RESUMO

Transdisciplinary research (TDR) approaches have been cited as essential for overcoming the intractable sustainability challenges that the world is currently facing, including air pollution, water management and climate change. However, such approaches can be difficult to undertake in practice and can consequently fail to add value. Therefore, examples of what works in practice (and what does not) are helpful to guide future research. In this study, we used a conceptual TDR framework as the basis to examine and evaluate the strengths and weaknesses of our approach in a project exploring air pollution in an informal settlement in Nairobi, Kenya. Reflection diaries exploring experiences of participation in the project were undertaken by the project team (comprising academic and community partners) at multiple time points throughout the project. These reflection diaries played an important role in evaluation and for providing space for team learning. Diaries were thematically coded according to the TDR framework to explore aspects of the project that worked well, and areas which presented challenges. We draw upon our reflections, and the extant literature, to make practical recommendations for researchers undertaking TDR projects in future. Recommendations focus on three key project stages (pre-funding, funded period, post-funding) and include; building the team in a way that includes all key stakeholders in relevant and appropriate roles, giving everyone sufficient time to work on the project, and ensuring regular and open communication. Building these recommendations into the design and delivery of transdisciplinary sustainability science projects will support progress towards achieving the Sustainable Development Goals (SDGs). Supplementary Information: The online version contains supplementary material available at 10.1007/s11625-023-01317-0.

3.
Environ Res ; 203: 111798, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333015

RESUMO

In this study, the stomatal ozone (O3) fluxes were investigated at five low-elevation forest sites in Western Germany (Rhineland Palatinate) over the time period 1998-2019. The Phytotoxic Ozone Dose with an hourly threshold of uptake (Y), to represent the detoxification capacity of trees (POD1 in mmol m-2 per leaf area, with Y = 1 nmol O3 m-2 s-1), and the number of exceedances of the O3 critical level of 5.2 mmol O3 m-2 per leaf area for European beech and 9.2 mmol O3 m-2 per leaf area for Norway spruce were calculated by using the DO3SE model. A Principal Component Analysis revealed strong correlations between daily O3 concentrations, daytime O3 (for hours with global radiation exceeding 50 W m-2), POD1, global radiation, vapor pressure deficit and air temperature. Moreover, a significant correlation was obtained between POD1 and soil water content (SWC) at all sites (r = 0.51-0.74). The Random Forests Analysis confirmed that the SWC is the most important predictor of stomatal O3 fluxes. The soil water supply is very important for POD1 estimation, because drought decreases stomatal conductance, leading to a reduction of transpiration, as well as to lower O3 uptake through stomata. Between 1998 and 2019, the drier and warmer climate induced a soil drought (on average, SWC - 0.15 % per year) leading to lower stomatal O3 uptake by forests (- 0.36 mmol O3 m-2 per year). Hence, during growing seasons with sufficient water supply and often lower O3 levels compared to hot and dry periods, forests are at higher O3 risk than during hot and dry periods when the drought stress is more significant than O3 stress despite relatively higher O3 levels. Irrespective of these differences in O3 uptake between relatively cool and humid as compared to relatively hot and dry years in the study region, the Critical Level for O3 was exceeded in late spring/early summer (May/June) during all 22 years. Risk assessment for the protection of European forests, which is urgently needed due to the forests current critical state after several successive years of drought and exceedance of the O3 critical level in large areas of Europe, should therefore become flux-based to account for the inter-twined effects of drought and O3 on the physiology and health of forest trees in the region. For stomatal O3 fluxes estimation, a better soil water and leaf parameterization is needed e.g., by taking into account both O3- and drought-induced effects.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Ozônio/análise , Folhas de Planta , Estações do Ano , Fatores de Tempo
4.
Plants (Basel) ; 8(4)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939811

RESUMO

Estimating food production under future air pollution and climate conditions in scenario analysis depends on accurately modelling ozone (O3) effects on yield. This study tests several assumptions that form part of published approaches for modelling O3 effects on photosynthesis and leaf duration against experimental data. In 2015 and 2016, two wheat cultivars were exposed in eight hemispherical glasshouses to O3 ranging from 22 to 57 ppb (24 h mean), with profiles ranging from raised background to high peak treatments. The stomatal O3 flux (Phytotoxic Ozone Dose, POD) to leaves was simulated using a multiplicative stomatal conductance model. Leaf senescence occurred earlier as average POD increased according to a linear relationship, and the two cultivars showed very different senescence responses. Negative effects of O3 on photosynthesis were only observed alongside O3-induced leaf senescence, suggesting that O3 does not impair photosynthesis in un-senesced flag leaves at the realistic O3 concentrations applied here. Accelerated senescence is therefore likely to be the dominant O3 effect influencing yield in most agricultural environments. POD was better than 24 h mean concentration and AOT40 (accumulated O3 exceeding 40 ppb, daylight hours) at predicting physiological response to O3, and flux also accounted for the difference in exposure resulting from peak and high background treatments.

5.
Glob Chang Biol ; 24(8): 3560-3574, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29604158

RESUMO

Introduction of high-performing crop cultivars and crop/soil water management practices that increase the stomatal uptake of carbon dioxide and photosynthesis will be instrumental in realizing the United Nations Sustainable Development Goal (SDG) of achieving food security. To date, however, global assessments of how to increase crop yield have failed to consider the negative effects of tropospheric ozone, a gaseous pollutant that enters the leaf stomatal pores of plants along with carbon dioxide, and is increasing in concentration globally, particularly in rapidly developing countries. Earlier studies have simply estimated that the largest effects are in the areas with the highest ozone concentrations. Using a modelling method that accounts for the effects of soil moisture deficit and meteorological factors on the stomatal uptake of ozone, we show for the first time that ozone impacts on wheat yield are particularly large in humid rain-fed and irrigated areas of major wheat-producing countries (e.g. United States, France, India, China and Russia). Averaged over 2010-2012, we estimate that ozone reduces wheat yields by a mean 9.9% in the northern hemisphere and 6.2% in the southern hemisphere, corresponding to some 85 Tg (million tonnes) of lost grain. Total production losses in developing countries receiving Official Development Assistance are 50% higher than those in developed countries, potentially reducing the possibility of achieving UN SDG2. Crucially, our analysis shows that ozone could reduce the potential yield benefits of increasing irrigation usage in response to climate change because added irrigation increases the uptake and subsequent negative effects of the pollutant. We show that mitigation of air pollution in a changing climate could play a vital role in achieving the above-mentioned UN SDG, while also contributing to other SDGs related to human health and well-being, ecosystems and climate change.


Assuntos
Poluição do Ar/efeitos adversos , Mudança Climática , Ozônio/química , Ozônio/toxicidade , Triticum/efeitos dos fármacos , Dióxido de Carbono/análise , Monitoramento Ambiental , Humanos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Chuva , Triticum/crescimento & desenvolvimento
6.
Glob Chang Biol ; 24(1): 78-84, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28722164

RESUMO

Tropospheric ozone is considered the most detrimental air pollutant for vegetation at the global scale, with negative consequences for both provisioning and climate regulating ecosystem services. In spite of recent developments in ozone exposure metrics, from a concentration-based to a more physiologically relevant stomatal flux-based index, large-scale ozone risk assessment is still complicated by a large and unexplained variation in ozone sensitivity among tree species. Here, we explored whether the variation in ozone sensitivity among woody species can be linked to interspecific variation in leaf morphology. We found that ozone tolerance at the leaf level was closely linked to leaf dry mass per unit leaf area (LMA) and that whole-tree biomass reductions were more strongly related to stomatal flux per unit leaf mass (r2  = 0.56) than to stomatal flux per unit leaf area (r2  = 0.42). Furthermore, the interspecific variation in slopes of ozone flux-response relationships was considerably lower when expressed on a leaf mass basis (coefficient of variation, CV = 36%) than when expressed on a leaf area basis (CV = 66%), and relationships for broadleaf and needle-leaf species converged when using the mass-based index. These results show that much of the variation in ozone sensitivity among woody plants can be explained by interspecific variation in LMA and that large-scale ozone impact assessment could be greatly improved by considering this well-known and easily measured leaf trait.


Assuntos
Poluentes Atmosféricos/toxicidade , Ozônio/toxicidade , Folhas de Planta/efeitos dos fármacos , Plantas/efeitos dos fármacos , Biomassa , Clima , Ecossistema , Folhas de Planta/fisiologia , Árvores/fisiologia
7.
Agric Syst ; 156: 76-84, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28867871

RESUMO

Global warming is predicted to increase in the future, with detrimental consequences for rainfed crops that are dependent on natural rainfall (i.e. non-irrigated). Given that many crops grown under rainfed conditions support the livelihoods of low-income farmers, it is important to highlight the vulnerability of rainfed areas to climate change in order to anticipate potential risks to food security. In this paper, we focus on India, where ~ 50% of rice is grown under rainfed conditions, and we employ statistical models (climate envelope models (CEMs) and boosted regression trees (BRTs)) to map changes in climate suitability for rainfed rice cultivation at a regional level (~ 18 × 18 km cell resolution) under projected future (2050) climate change (IPCC RCPs 2.6 and 8.5, using three GCMs: BCC-CSM1.1, MIROC-ESM-CHEM, and HadGEM2-ES). We quantify the occurrence of rice (whether or not rainfed rice is commonly grown, using CEMs) and rice extent (area under cultivation, using BRTs) during the summer monsoon in relation to four climate variables that affect rice growth and yield namely ratio of precipitation to evapotranspiration (PER), maximum and minimum temperatures (Tmax and Tmin ), and total rainfall during harvesting. Our models described the occurrence and extent of rice very well (CEMs for occurrence, ensemble AUC = 0.92; BRTs for extent, Pearson's r = 0.87). PER was the most important predictor of rainfed rice occurrence, and it was positively related to rainfed rice area, but all four climate variables were important for determining the extent of rice cultivation. Our models project that 15%-40% of current rainfed rice growing areas will be at risk (i.e. decline in climate suitability or become completely unsuitable). However, our models project considerable variation across India in the impact of future climate change: eastern and northern India are the locations most at risk, but parts of central and western India may benefit from increased precipitation. Hence our CEM and BRT models agree on the locations most at risk, but there is less consensus about the degree of risk at these locations. Our results help to identify locations where livelihoods of low-income farmers and regional food security may be threatened in the next few decades by climate changes. The use of more drought-resilient rice varieties and better irrigation infrastructure in these regions may help to reduce these impacts and reduce the vulnerability of farmers dependent on rainfed cropping.

8.
Glob Chang Biol ; 22(9): 3097-111, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27082950

RESUMO

The rising trend in concentrations of ground-level ozone (O3 ) - a common air pollutant and phytotoxin - currently being experienced in some world regions represents a threat to agricultural yield. Soybean (Glycine max (L.) Merr.) is an O3 -sensitive crop species and is experiencing increasing global demand as a dietary protein source and constituent of livestock feed. In this study, we collate O3 exposure-yield data for 49 soybean cultivars, from 28 experimental studies published between 1982 and 2014, to produce an updated dose-response function for soybean. Different cultivars were seen to vary considerably in their sensitivity to O3 , with estimated yield loss due to O3 ranging from 13.3% for the least sensitive cultivar to 37.9% for the most sensitive, at a 7-h mean O3 concentration (M7) of 55 ppb - a level frequently observed in regions of the USA, India and China in recent years. The year of cultivar release, country of data collection and type of O3 exposure used were all important explanatory variables in a multivariate regression model describing soybean yield response to O3 . The data show that the O3 sensitivity of soybean cultivars increased by an average of 32.5% between 1960 and 2000, suggesting that selective breeding strategies targeting high yield and high stomatal conductance may have inadvertently selected for greater O3 sensitivity over time. Higher sensitivity was observed in data from India and China compared to the USA, although it is difficult to determine whether this effect is the result of differential cultivar physiology, or related to local environmental factors such as co-occurring pollutants. Gaining further understanding of the underlying mechanisms that govern the sensitivity of soybean cultivars to O3 will be important in shaping future strategies for breeding O3 -tolerant cultivars.


Assuntos
Poluentes Atmosféricos , Glycine max , Ozônio , China , Poluição Ambiental , Índia
9.
Ecotoxicol Environ Saf ; 112: 29-38, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25463850

RESUMO

The present study deals with assessment of response of a tropical soybean cultivar to O3 in relation to photosynthetic pigments, chlorophyll fluorescence kinetics, antioxidative capacity, N assimilation enzymes, metabolites, growth and yield using ethylene diurea (EDU) given as a soil drench (400) ppm at an interval of 10 days after germination up to maturity. Mean O3 concentration was 42 ppb and accumulated threshold above 40 ppb (AOT 40) was 9.07 ppm h. Lipid peroxidation and total phenolics reduced, while increases in activities of antioxidative and nitrogen assimilation enzymes, ascorbic acid, protein, photosynthetic pigments, Fv/Fm ratio, number of leaves, flowers, pods, branches and yield attributes were found in EDU treated plants. EDU alleviated the negative effects of O3 by enhancing the first line of defense against ROS and protecting N assimilation enzymes at flowering and maintaining adequate supply of photosynthates to developing pods during pod filling stage. EDU provided maximum protection between flowering to pod filling stage.


Assuntos
Poluentes Atmosféricos/toxicidade , Glycine max/efeitos dos fármacos , Ozônio/toxicidade , Compostos de Fenilureia/farmacologia , Antioxidantes/metabolismo , Nitrogênio/metabolismo , Reprodução/genética , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo
10.
Environ Pollut ; 174: 244-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23279903

RESUMO

Although ozone is well-documented to reduce crop yields in the densely populated Indo-Gangetic Plain, there is little knowledge of its effects in other parts of south Asia. We surveyed crops close to the city of Peshawar, in north-west Pakistan, for visible injury, linking this to passive measurements of ozone concentrations. Foliar injury was found on potato, onion and cotton when mean monthly ozone concentrations exceeded 45 ppb. The symptoms on onion were reproduced in ozone fumigation experiments, which also showed that daytime ozone concentrations of 60 ppb significantly reduce the growth of a major Pakistani onion variety. Aphid infestation on spinach was also reduced at these elevated ozone concentrations. The ozone concentrations measured in April-May in Peshawar, and used in the fumigation experiment, are comparable to those that have been modelled to occur over many parts of south Asia, where ozone may be a significant threat to sensitive crops.


Assuntos
Poluentes Atmosféricos/toxicidade , Produtos Agrícolas/efeitos dos fármacos , Monitoramento Ambiental , Ozônio/toxicidade , Agricultura/estatística & dados numéricos , Poluição do Ar/estatística & dados numéricos , Cidades , Produtos Agrícolas/crescimento & desenvolvimento , Herbivoria , Paquistão
11.
Environ Pollut ; 162: 319-24, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22243880

RESUMO

The rapid urbanisation of many cities in south and south-east Asia has increased the demand for bricks, which are typically supplied from brick kilns in peri-urban areas. We report visible foliar damage to mango, apricot and plum trees in the vicinity of traditional Bull's Trench brick kilns in Peshawar, Pakistan. Visible injury symptoms, hydrogen fluoride concentrations in air, and foliar fluoride concentrations were all greater in the vicinity of brick kilns than at more distant sites, indicating that fluoride emissions from brick kilns were the main cause of damage. Interviews with local farmers established the significant impact of this damage on their livelihoods. Since poorly regulated brick kilns are often found close to important peri-urban agricultural areas, we suggest that this may be a growing but unrecognised environmental problem in regions of Asia where emission control in brick kilns has not been improved.


Assuntos
Poluentes Atmosféricos/toxicidade , Materiais de Construção/análise , Ácido Fluorídrico/toxicidade , Mangifera/efeitos dos fármacos , Prunus/efeitos dos fármacos , Árvores/efeitos dos fármacos , Adulto , Monitoramento Ambiental , Feminino , Humanos , Masculino , Mangifera/crescimento & desenvolvimento , Paquistão , Prunus/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Adulto Jovem
12.
Environ Pollut ; 157(7): 2091-107, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19297062

RESUMO

Exposure and flux-based indices of O3 risk were compared, at 19 forest locations across Bavaria in southern Germany from 2002 to 2005; leaf symptoms on mature beech trees found at these locations were also examined for O3 injury. O3 flux modelling was performed using continuously recorded O3 concentrations in combination with meteorological and soil moisture data collected from Level II forest sites. O3 measurements at nearby rural open-field sites proved appropriate as surrogates in cases where O3 data were lacking at forest sites (with altitude-dependent average differences of about 10% between O3 concentrations). Operational thresholds of biomass loss for both O3 indices were exceeded at the majority of the forest locations, suggesting similar risk under long-term average climate conditions. However, exposure-based indices estimated higher O3 risk during dry years as compared to the flux-based approach. In comparison, minor O3-like leaf injury symptoms were detected only at a few of the forest sites investigated. Relationships between flux-based risk thresholds and tree response need to be established for mature forest stands for validation of predicted growth reductions under the prevailing O3 regimes.


Assuntos
Poluentes Atmosféricos/toxicidade , Fagus/crescimento & desenvolvimento , Ozônio/toxicidade , Folhas de Planta/química , Poluentes Atmosféricos/análise , Exposição Ambiental , Monitoramento Ambiental/métodos , Fagus/efeitos dos fármacos , Alemanha , Ozônio/análise , Folhas de Planta/efeitos dos fármacos , Medição de Risco/métodos
13.
Environ Pollut ; 147(3): 454-66, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17412465

RESUMO

Two different indices have been proposed for estimation of the risk caused to forest trees across Europe by ground-level ozone, (i) the concentration based AOT40 index (Accumulated Over a Threshold of 40 ppb) and (ii) the recently developed flux based AFstY index (Accumulated stomatal Flux above a flux threshold Y). This paper compares the AOT40 and AFstY indices for three forest trees species at different locations in Europe. The AFstY index is estimated using the DO(3)SE (Deposition of Ozone and Stomatal Exchange) model parameterized for Scots pine (Pinus sylvestris), beech (Fagus sylvatica) and holm oak (Quercus ilex). The results show a large difference in the perceived O(3) risk when using AOT40 and AFstY indices both between species and regions. The AOT40 index shows a strong north-south gradient across Europe, whereas there is little difference between regions in the modelled values of AFstY. There are significant differences in modelled AFstY between species, which are predominantly determined by differences in the timing and length of the growing season, the periods during which soil moisture deficit limits stomatal conductance, and adaptation to soil moisture stress. This emphasizes the importance of defining species-specific flux response variables to obtain a more accurate quantification of O(3) risk.


Assuntos
Clima , Oxidantes Fotoquímicos/toxicidade , Ozônio/toxicidade , Árvores/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Europa (Continente) , Fagus/efeitos dos fármacos , Modelos Biológicos , Pinus/efeitos dos fármacos , Quercus/efeitos dos fármacos , Medição de Risco/métodos , Especificidade da Espécie
14.
Environ Pollut ; 145(3): 636-43, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16777285

RESUMO

The objective of this study was to establish whether EU and UN-ECE/ICP-Forests monitoring data (i) provide the variables necessary to apply the flux-based modeling methods and (ii) meet the quality criteria necessary to apply the flux-based critical level concept. Application of this model has been possible using environmental data collected from the EU and UN-ECE/ICP-Forests monitoring network in Switzerland and Italy for 2000-2002. The test for data completeness and plausibility resulted in 6 out of a possible total of 20 Fagus sylvatica L. plots being identified as suitable from Switzerland, Italy, Spain, and France. The results show that the collected data allow the identification of different spatial and temporal areas and periods as having higher risk to ozone than those identified using the AOT40 approach. However, it was also apparent that the quality and completeness of the available data may severely limit a complete risk assessment across Europe.


Assuntos
Fagus/química , Oxidantes Fotoquímicos/farmacocinética , Ozônio/farmacocinética , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Europa (Continente) , Modelos Biológicos , Medição de Risco/métodos , Estações do Ano , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...