Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202401413, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770893

RESUMO

A homologous series of 4,7-bis(aryl) substituted benzothiadiazole (BTD) compounds, containing the helicenic derivatives bis([4]helicene), bis([5]helicene) and bis([6]helicene), have been prepared upon a double Suzuki coupling between 3,6-bis(pinacolyl-borane)-BTD and the corresponding bromo-aryl precursors. The single crystal X-ray structure of the bis([4]helicene) compound shows the existence of both helicities (M) and (P) on the same molecule. All the compounds of the series are highly emissive in solution, with quantum yields of the emission ranging from 50 to 91%. The enantiopure compounds (M,M) and (P,P) for the BTD-bis([6]helicene) have been prepared from the corresponding enantiopure 2-bromo-[6]helicene precursors. Their chiroptical properties have been investigated in correlation with density functional theory (DFT) calculations, which allowed to confidently assign the absolute configuration of the helicene arms and to characterize the different electronic transitions, including the low energy charge transfer excitation from helicenes to BTD. The enantiomerically pure fluorophores (M,M)- and (P,P)-BTD-bis([6]helicene), which exist in solution as two main conformers, according to the DFT calculations, show CPL activity in solution, with glum factors of ≈ 1.7×10-3 at lem = 525 nm, and also in the solid state, with glum factors of ≈ 1.2×10-3 in spite of the strong decrease of the quantum efficiency.

2.
Angew Chem Int Ed Engl ; 63(1): e202316103, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37997293

RESUMO

The divergent synthesis of two indane polyketides of the indidene family, namely (±)-indidene A (11 steps, 1.7 %) and (+)-indidene C (13 steps, 1.3 %), is reported. The synthesis of the trans-configured common indane intermediate was enabled by palladium(0)-catalyzed methylene C(sp3 )-H arylation, which was performed in both racemic and enantioselective (e.r. 99 : 1) modes. Further elaboration of this common intermediate by nickel-catalyzed dehydrogenative coupling allowed the rapid installation of the aroyl moiety of (±)-indidene A. In parallel, the biphenyl system of (±)- and (+)-indidene C was constructed by Suzuki-Miyaura coupling. These investigations led us to revise the structures of indidenes B and C.

3.
Angew Chem Int Ed Engl ; 63(1): e202316649, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37988181

RESUMO

Atomically precise Au nanoclusters (NCs) with discrete energy levels can be used as photosensitizers for CO2 reduction. However, tight ligand capping of Au NCs hinders CO2 adsorption on its active sites. Here, a new hybrid material is obtained by anchoring of thiol functionalized terpyridine metal complexes (metal=Ru, Ni, Fe, Co) on Au NCs by ligand exchange reactions (LERs). The anchoring of Ru and Ni complexes on Au25 NC (Au25 -Ru and Au25 -Ni) leads to adequate CO2 to CO conversion for photocoupled electrocatalytic CO2 reduction (PECR) in terms of high selectivity, with Faradaic efficiency of CO (FECO ) exceeding 90 % in a wide potential range, remarkable activity (CO production rate up to two times higher than that for pristine Au25 PET18 ) and extremely large turnover frequencies (TOFs, 63012 h-1 at -0.97 V for Au25 -Ru and 69989 h-1 at -1.07 V vs. RHE for Au25 -Ni). Moreover, PECR stability test indicates the excellent long-term stability of the modified NCs in contrast with pristine Au NCs. The present approach offers a novel strategy to enhance PECR activity and selectivity, as well as to improve the stability of Au NCs under light illumination, which paves the way for highly active and stable Au NCs catalysts.

4.
J Am Chem Soc ; 145(50): 27273-27281, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065568

RESUMO

Atomically precise Au25 nanoclusters have garnered significant interest in the field of heterogeneous catalysis due to their remarkable activity and selectivity. However, for the extensively studied reaction of low-temperature CO oxidation, their performance has not been competitive compared to other known gold nanocatalysts. To address this, we deposited Au25(SR)18 (R = CH2CH2Ph) nanoclusters onto a manganese oxide support (Au25/MnO2), resulting in a very stable and highly active catalyst. By optimizing the pretreatment temperature, we were able to significantly enhance the performance of the Au25/MnO2 catalyst, which outperformed most other gold catalysts. Impressively, 100% conversion of CO was achieved at temperatures as low as -50 °C, with 50% conversion being reached below -70 °C. Furthermore, the existence of ligands could also influence the negative apparent activation energy observed at intermediate temperatures. Analysis using X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and X-ray diffraction (XRD) techniques indicated that the Au25 nanoclusters remained stable on the catalyst surface even after pretreatment at high temperatures. In-situ modulation excitation spectroscopy (MES) spectra also confirmed that the Au cluster was the active site for CO oxidation, highlighting the potential of atomically precise Au25 nanoclusters as primary active sites at very low temperatures.

5.
ACS Nano ; 17(20): 20376-20386, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37805942

RESUMO

Chiral gold nanoclusters offer significant potential for exploring chirality at a fundamental level and for exploiting their applications in sensing and catalysis. However, their widespread use is impeded by low yields in synthesis, tedious separation procedures of their enantiomeric forms, and limited thermal stability. In this study, we investigated the direct synthesis of enantiopure chiral nanoclusters using the chiral ligand 2-MeBuSH in the fabrication of Au25, Au38, and Au144 nanoclusters. Notably, this approach leads to the unexpected formation of intrinsically chiral clusters with high yields for chiral Au38 and Au144 nanoclusters. Experimental evaluation of chiral activity by circular dichroism (CD) spectroscopy corroborates previous theoretical calculations, highlighting the stronger CD signal exhibited by Au144 compared to Au38 or Au25. Furthermore, the formation of a single enantiomeric form is experimentally confirmed by comparing it with intrinsically chiral Au38(2-PET)24 (2-PET: 2-phenylethanethiol) and is supported theoretically for both Au38 and Au144. Moreover, the prepared chiral clusters show stability against diastereoisomerization, up to temperatures of 80 °C. Thus, our findings not only demonstrate the selective preparation of enantiopure, intrinsically chiral, and highly stable thiolate-protected Au nanoclusters through careful ligand design but also support the predicted "super" chirality in the Au144 cluster, encompassing hierarchical chirality in ligands, staple configuration, and core structure.

6.
J Phys Chem A ; 127(35): 7309-7322, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37624607

RESUMO

Carbamate is an emerging class of a polymer backbone for constructing sequence-defined, abiotic polymers. It is expected that new functional materials can be de novo designed by controlling the primary polycarbamate sequence. While amino acids have been actively studied as building blocks for protein folding and peptide self-assembly, carbamates have not been widely investigated from this perspective. Here, we combined infrared (IR), vibrational circular dichroism (VCD), and nuclear magnetic resonance (NMR) spectroscopy with density functional theory (DFT) calculations to understand the conformation of carbamate monomer units in a nonpolar, aprotic environment (chloroform). Compared with amino acid building blocks, carbamates are more rigid, presumably due to the extended delocalization of π-electrons on the backbones. Cis configurations of the amide bond can be energetically stable in carbamates, whereas peptides often assume trans configurations at low energies. This study lays an essential foundation for future developments of carbamate-based sequence-defined polymer material design.

7.
Chem Sci ; 14(28): 7665-7674, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37476726

RESUMO

Au25 nanoclusters (NCs) protected by 18 thiol-ligands (Au25SR18, SR is a thiolate ligand) are the prototype of atomically precise thiolate-protected gold NCs. Studies concerning the alteration of the number of surface ligands for a given Au25SR18 NC are scarce. Herein we report the conversion of hydrophobic Au25PET18 (PET = 2-phenylethylthiolate) NCs to Au25SR19 [Au25PET18(metal complex)1] induced by ligand exchange reactions (LERs) with thiolated terpyridine-metal complexes (metal complex, metal = Ru, Fe, Co, Ni) under mild conditions (room temperature and low amounts of incoming ligands). Interestingly, we found that the ligand addition reaction on Au25PET18 NCs is metal dependent. Ru and Co complexes preferentially lead to the formation of Au25SR19 whereas Fe and Ni complexes favor ligand exchange reactions. High-resolution electrospray ionization mass spectrometry (HRESI-MS) was used to determine the molecular formula of Au25SR19 NCs. The photophysical properties of Au25PET18(Ru complex)1 are distinctly different from Au25PET18. The absorption spectrum is drastically changed upon addition of the extra ligand and the photoluminescence quantum yield of Au25PET18(Ru complex)1 is 14 times and 3 times higher than that of pristine Au25PET18 and Au25PET17(Ru complex)1, respectively. Interestingly, only one surface ligand (PET) could be substituted by the metal complex when neutral Au25PET18 was used for ligand exchange whereas two ligands could be exchanged when starting with negatively charged Au25PET18. This charge dependence provides a strategy to precisely control the number of exchanged ligands at the surface of NCs.

8.
Angew Chem Int Ed Engl ; 62(29): e202304075, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37158668

RESUMO

A chiral bispyrene macrocycle designed for exclusive intermolecular excimer fluorescence upon aggregation was synthesized by a double hydrothiolation of a bis-enol ether macrocycle followed by intramolecular oxidation of free thiols. Unusually high stereoselectivity was achieved for the thiol-ene additions under templated conditions and Et3 B/O2 radical initiation. After enantiomer separation (chiral stationary phase HPLC), aqueous conditions provoked aggregation. Detailed structural evolution was afforded by ECD/CPL monitoring. Three regimes can be observed and characterized by strong modifications in chiroptical patterns under, at, or above a 70 % H2 O : THF threshold. In luminescence, high glum dissymmetry factors values were obtained, up to 0.022, as well as a double sign inversion of CPL signals during the aggregation, a behavior rationalized by time-dependent density functional theory (TDDFT) calculations. Langmuir layers of enantiopure disulfide macrocycles were formed at the air-water interface and transferred onto solid substrates to afford Langmuir-Blodgett films, which were then studied by AFM and UV/ECD/fluorescence/CPL.

9.
Angew Chem Int Ed Engl ; 62(28): e202300146, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37114412

RESUMO

Knowledge of the reaction mechanism is key for rational catalyst improvement. Traditionally mechanistic studies focus on structure and the reaction conditions like temperature, pH, pressure, etc., whereas the time dimension is often overlooked. Here, we demonstrate the influence of time on the mechanism of a catalytic reaction. A dual catalytic mechanism was identified for the CO oxidation over Au/TiO2 by time-resolved infrared spectroscopy coupled with modulation excitation spectroscopy. During the first seconds, CO on the gold particles is the only reactive species. As the reaction proceeds, the redox properties of TiO2 dominate the catalytic activity through electronic metal-support interaction (EMSI). CO induces the reduction and reconstruction of TiO2 whereas oxygen leads to its oxidation. The activity of the catalyst follows the spectroscopic signature of the EMSI. These findings demonstrate the power of studying short-time kinetics for mechanistic studies.

10.
Small ; 19(24): e2207857, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36895069

RESUMO

Despite enormous progress and improvement in photocatalytic CO2 reduction reaction (CO2 RR), the development of photocatalysts that suppress H2 evolution reaction (HER), during CO2 RR, remains still a challenge. Here, new insight is presented for controllable CO2 RR selectivity by tuning the architecture of the photocatalyst. Au/carbon nitride with planar structure (p Au/CN) showed high activity for HER with 87% selectivity. In contrast, the same composition with a yolk@shell structure (Y@S Au@CN) exhibited high selectivity of carbon products by suppressing the HER to 26% under visible light irradiation. Further improvement for CO2 RR activity was achieved by a surface decoration of the yolk@shell structure with Au25 (PET)18 clusters as favorable electron acceptors, resulting in longer charge separation in Au@CN/Auc Y@S structure. Finally, by covering the structure with graphene layers, the designed catalyst maintained high photostability during light illumination and showed high photocatalytic efficiency. The optimized Au@CN/Auc /G Y@S structure displays high photocatalytic CO2 RR selectivity of 88%, where the CO and CH4 generations during 8 h are 494 and 198 µmol/gcat., respectively. This approach combining architecture engineering and composition modification provides a new strategy with improved activity and controllable selectivity toward targeting applications in energy conversion catalysis.

11.
Nanoscale ; 15(14): 6838-6843, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960796

RESUMO

Ligand and metal exchange reactions are powerful methods to tailor the properties of atomically precise metal nanoclusters. Hence, a deep understanding of the mechanisms behind the dynamics that rule the ligand monolayer is crucial for its specific functionalization. Combining variable-temperature NMR experiments and dynamic-NMR simulations, we extract the thermodynamic activation parameters of a new exchange reaction: the intracluster ligand rearrangement between the two symmetry-unique positions in [Ag25(DMBT)18]- and [Ag24Au(DMBT)18]- clusters. We report for the first time that this peculiar intracluster modification does not seem to proceed via metal-sulphur bond breaking and follows a first-order rate law, being therefore a process independent from the well-described collisional ligand exchange.

12.
Langmuir ; 39(6): 2135-2151, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36739536

RESUMO

Recently the focus of the Langmuir-Blodgett technique as a method of choice to transfer monolayers from the air/water interface onto solid substrates in a controllable fashion has been shifting toward purely hydrophobic gold and silver nanoparticles. The fundamental interactions between particles that become relevant in the absence of polar groups range from dispersive attractions from the metal cores and repulsions between ligand shells to weaker entropic factors. The layer evolution is explored, starting with interfacial self-assembly upon solution spreading and domain and circular island formation, which subsequently merge into a complete monolayer and finally form multilayers or macroscopic wrinkles. Moreover, structural properties such as the core:ligand size ratio are investigated in the context of dispersive forces, whereby the nanoparticles with small cores and long ligands tend not to aggregate sufficiently to produce continuous films, those with large cores and short ligands were found to aggregate irreversibly, and those in between the two extremes were concluded to be able to form highly organized crystalline films. Similarly, the characteristics of the spreading solution such as the concentration and the solvent type crucially influence the film crystallinity, with the deciding factor being the degree of affinity between the capping ligand and the solvent used for spreading. Finally, the most common strategies employed to enhance the mechanical stability of the metal nanoparticle films along with the recent attempts to functionalize the particles in attempts to improve their applicability in the industry are summarized and evaluated in relation to their future prospects. One of the objectives of this feature article is to elucidate the differences between hydrophobic metal nanoparticles and typical amphiphilic molecules that the majority of the literature in the field describes and to familiarize the reader with the knowledge required to design Langmuir-Blodgett nanoparticle systems as well as the strategies to improve existing ones.

13.
Angew Chem Int Ed Engl ; 62(16): e202215746, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36728623

RESUMO

A bidentate chiral dithiol (diBINAS) is utilised to bridge Au25 nanoclusters to form oligomers. Separation by size allows the isolation of fractions that are stable thanks to the bidentate nature of the linker. The structure of the products is elucidated by small-angle X-ray scattering and calculated using density functional theory. Additional structural details are studied by diffusion-ordered nuclear magnetic resonance spectroscopy, transmission electron microscopy and matrix-assisted laser desorption/ionization time of flight mass spectrometry. Significant changes in the optical properties are analysed by UV/Vis and fluorescence spectroscopies, with the latter demonstrating a strong emission enhancement. Furthermore, the emergent chiral characteristics are studied by circular dichroism. Due to the geometry constraints of the nanocluster assemblies, diBINAS can be regarded as a templating molecule, taking a step towards the directed self-assembly of metal clusters.

14.
J Colloid Interface Sci ; 630(Pt B): 28-36, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327730

RESUMO

HYPOTHESIS: Langmuir-Blodgett (LB) technique allows the deposition of gold nanoparticles and nanoclusters (atomically precise nanoparticles below 2 nm in diameter) onto solid substrates with an unprecedented degree of control and high transfer ratios. Nanoclusters are expected to follow the crinkle folding mechanism, which promotes the formation of trilayers of nanoparticles but kinetically disfavors the formation of the fourth layer. EXPERIMENTS: LB films of Au38(SC2H4Ph)24 nanocluster were prepared at a range of surface pressures in the bilayer/trilayer regime and their internal structure was analyzed with X-ray Reflectivity (XRR) and Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS). Bimodal atomic force microscopy (AFM) imaging was used to quantify the elastic modulus, which can be correlated with the topography at the same point on the surface. FINDINGS: Nanocluster bilayers and trilayers exhibited the elastic moduli of ca. 1.2 GPa and 0.9 GPa respectively. Films transferred in the 20-25 mN/m surface pressure regime displayed a particular propensity to form highly vertically organized trilayers. Further compression resulted in disorganization of the layers. Crucially, the use of two cantilevers of contrasting stiffness for bimodal AFM measurements has demonstrated a new approach to quantify the mechanical properties of ultrathin films without the use of deconvolution algorithms to remove the substrate contribution.


Assuntos
Ouro , Nanopartículas Metálicas , Microscopia de Força Atômica , Raios X , Módulo de Elasticidade
15.
J Phys Chem B ; 126(48): 10055-10068, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36417492

RESUMO

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and the hydroxyl radical (•OH) have specific functions in biological processes, while their uncontrolled production and reactivity are known to be determining factors in pathophysiology. Methionine (Met) residues act as endogenous antioxidants, when they are oxidized into methionine sulfoxide (MetSO), thus depleting ROS and protecting the protein. We employed tandem mass spectrometry combined with IR multiple photon dissociation spectroscopy to study the oxidation induced by OH radicals produced by γ radiolysis on model cyclic dipeptides c(LMetLMet), c(LMetDMet), and c(GlyMet). Our aim was to characterize the geometries of the oxidized peptides in the gas phase and to understand the relationship between the structure of the 2-center 3-electron (2c-3e) free radical formed in the first step of the oxidation process and the final compound. Density functional theory calculations were performed to characterize the lowest energy structures of the final product of oxidation and to interpret the IR spectra. Collision-induced dissociation tandem mass spectrometry (CID-MS2) experiments of oxidized c(LMetLMet)H+ and c(LMetDMet)H+ led to the loss of one or two oxidized sulfenic acid molecules, indicating that the addition of one or two oxygen atoms occurs on the sulfur atom of both methionine side chains and no sulfone formation was observed. The CID-MS2 fragmentation mass spectrum of oxidized c(GlyMet)H+ showed only the loss of one oxidized sulfenic acid molecule. Thus, the final products of oxidation are the same regardless of the structure of the precursor sulfur-centered free radical.


Assuntos
Dipeptídeos , Elétrons , Ácidos Sulfênicos , Peróxido de Hidrogênio , Metionina , Análise Espectral , Enxofre
16.
J Phys Chem C Nanomater Interfaces ; 126(45): 19336-19345, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36425001

RESUMO

Advanced instrumentation and modern analysis tools such as transmission electron microscopy (TEM) have led to phenomenal progress in understanding crystallization, in particular from solution, which is a prerequisite for the design-based preparation of a target crystal. Nevertheless, little has been understood about the crystallization pathway under high-temperature annealing (HTA) conditions. Metal oxide crystals are prominent materials that are usually obtained via HTA. Despite the widespread application of hydro-/solvothermal methods on the laboratory scale, HTA is the preferred method in many industries for the mass production of metal oxide crystals. However, poor control over the morphology and grain sizes of these crystals under extreme HTA conditions limits their applications. Here, applying ex-situ TEM, the transformation of a single amorphous spherical submicrometer precursor particle of SrAl12O19 (SA6) at 1150 °C toward a nanosized thermodynamically favored hexagonal crystal is explored. It is illustrated in real space, step by step, how both kinetic and thermodynamic factors contribute to this faceting and morphology evolution. These results demonstrate a nonclassical nucleation and growth process consisting of densification, crystallite domain formation, oriented attachment, surface nucleation, 2-dimensional (2D) growth, and surface diffusion of the atoms to eventually result in the formation of a hexagonal platelet crystal. The TEM images further delineate a parent crystal driving the crystal lattice and morphological orientation of a network of interconnected platelets.

17.
Biosensors (Basel) ; 12(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36291032

RESUMO

In this study, polyelectrolyte (PE) layers are deposited on substrates made by glass covered with an array of gold nanoparticles (GNPs). In particular, the samples studied have 0 PE layers (GGPE0), 3 PE layers (GGPE3), 11 PE layers (GGPE11), and 21 PE layers (GGPE21). All samples have been studied by micro-Raman spectroscopy. An acetic acid solution (10% v/v) has been used as a standard solution in order to investigate the SERS effect induced by different numbers of PE layers in each sample. The Surface Enhancement Raman Spectroscopy (SERS) effect correlating to the number of PE layers deposited on the samples has been shown. This effect is explained in terms of an increase in the interaction between the photon of the laser source and the plasmonic band of the GNPs due to a change of the permittivity of the surrounding medium around the GNPs. The trends of the ratios of the intensities of the Raman bands of the acetic acid solution (acetic acid and water molecules) on the band at 1098 cm-1 ascribed to the substrates increase, and the number of PE layers increases.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Polieletrólitos , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Água
18.
Nat Commun ; 13(1): 5458, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115847

RESUMO

Au catalysts have drawn broad attention for catalytic CO oxidation. However, a molecular-level understanding of the reaction mechanism on a fast time-resolved scale is still lacking. Herein, we apply in situ DRIFTS and UV-Vis spectroscopy to monitor the rapid dynamic changes during CO oxidation over Au/TiO2. A pronounced transient inactivation effect likely due to a structural change of Au/TiO2 induced by the reactants (CO and O2) is observed at the beginning of the reaction. The transient inactivation effect is affected by the ratio of CO and O2 concentrations. More importantly, during the unstable state, the electronic properties of the Au particles change, as indicated by the shift of the CO stretching vibration. UV-Vis spectroscopy corroborates the structure change of Au/TiO2 surface induced by the reactants, which leads to a weakening of the Au catalyst's ability to be oxidized (less O2 adsorption), resulting in the transient inactivation effect.

19.
Angew Chem Int Ed Engl ; 61(43): e202209645, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36005739

RESUMO

Noble metal nanoclusters allow for the atomically-precise control of their composition. However, to create nanoclusters with pre-defined optical properties, comprehensive description of their structure-property relation is required. Here, we report the gold atom doping impact on one-photon and two-photon absorption (TPA) and luminescence properties of ligated silver nanoclusters via combined experimental studies and time-dependent density functional theory simulations (TD-DFT). We synthesized a series of Ag25-x Aux (DMBT)18 nanoclusters where x=0, 1 and 5-10. For Ag24 Au1 (DMBT)18 we demonstrate that the presence of the central Au dopant strongly influences linear and non-linear optical properties, increasing photoluminescence quantum yield and two-photon brightness, with respect to undoped silver nanoclusters. With improved TPA and luminescence, atomically-precise AuAg alloys presented in our work can serve as robust luminescent probes e.g. for bioimaging in the second biological window.

20.
ACS Appl Mater Interfaces ; 14(26): 29521-29536, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35729793

RESUMO

Atomically precise gold nanoclusters (AuNCs) are an emerging class of quantum-sized nanomaterials with well-defined molecular structures and unique biophysical properties, rendering them highly attractive for biological applications. We set out to study the impact of different ligand shells of atomically similar nanoclusters on cellular recognition and response. To understand the effects of atomically precise nanoclusters with identical composition on cells, we selected two different water-soluble gold nanoclusters protected with captopril (Capt) and glutathione (GSH): Au25(Capt)18 (CNC) and Au25(GSH)18 (GNC), respectively. We demonstrated that a change of the ligand of the cluster completely changes its biological functions. Whereas both nanoclusters are capable of internalization, only CNC exhibits remarkable cytotoxicity, more specifically on cancer cells. CNC shows enhanced cytotoxicity by inhibiting the OXPHOS of mitochondria, possibly by inhibiting the ATP synthase complex of the electron transport chain (ETC), and by initiating the leakage of electrons into the mitochondrial lumen. The resulting increase in both mitochondrial and total cellular ROS triggers cell death indicated by the appearance of cellular markers of apoptosis. Remarkably, this effect of nanoclusters is independent of any external light source excitation. Our findings point to the prevailing importance of the ligand shell for applications of atomically precise nanoclusters in biology and medicine.


Assuntos
Captopril , Ouro , Captopril/química , Captopril/farmacologia , Glutationa , Ouro/química , Ouro/farmacologia , Ligantes , Mitocôndrias , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...