Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
2.
MethodsX ; 10: 101959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36545542

RESUMO

Power output from the PV module changes continuously with time depending upon the climatic condition. This changes are most important in tropical area like Senegal due to the variation of the seasons (dry and rainy). Furthermore, different types of maximum power point tracking (MPPT) algorithm are presented in literature in order to get maximum output from the PV system. They can be summarized in two categories: classical and intelligent methods. The classical methods in no uniform weather condition are not efficient and an important loss of energy is showed. However, faced to this problematics like energy loss and no uniform weather conditions an Adaptative methods is used to optimize the PVs energy. In this study, two intelligent controllers based on artificial neural networks (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) are proposed to optimize the PVs production in non-uniform weather conditions and compared in order to show the most powerful model. For the ANN, the main challenge is to find the optimal neural in the hidden layer and in the paper, it is obtained using evaluator factor like mean squared error (MSE). These techniques using artificial intelligence (AI) algorithms are used for power optimization of a photovoltaic system are trained and validated with real data from a photovoltaic micro power plant in dry and rainy season installed at polytechnic high school of Dakar. The performances of the controllers to optimize the PVs power are evaluated during the dry and rainy seasons. Simulation results show that the ANFIS MPPT controller is more efficient and robust than ANN in non-uniform weather conditions. They have the ability of generalization and adaption to each meteorological conditions. These bullet summarize the applied methodology•A real electrical characteristics of photovoltaic panel are used for learning and validation of the controllers.•A comparative study of the methods in two different season is done.•ANFIS gives best performance in weather conditions compared to the ANN.

3.
Microb Ecol ; 83(4): 886-898, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34245330

RESUMO

The intensification of biological processes coping with salt stress became a major issue to mitigate land degradation. The Sine-Saloum Delta in Senegal is characterized by salt-affected soils with vegetation dominated by salt-tolerant grass Sporobolus robustus and shrubs like Prosopis juliflora. Plant experiments in controlled conditions suggested that arbuscular mycorrhizal (AM) fungi might be the key actors of facilitation process observed between S. robustus and P. juliflora, but the AM fungal community determinants are largely unknown. The current field-based study aimed at (1) characterizing the environmental drivers (rhizosphere physico-chemical properties, plant type and season) of the AM fungal community along an environmental gradient and (2) identifying the AM fungal taxa that might explain the S. robustus-mediated benefits to P. juliflora. Glomeraceae predominated in the two plants, but a higher richness was observed for S. robustus. The pH and salinity were the main drivers of AM fungal community associated with the two plants, negatively impacting richness and diversity. However, while a negative impact was also observed on mycorrhizal colonization for S. robustus, P. juliflora showed opposite colonization patterns. Furthermore, no change was observed in terms of AM fungal community dissimilarity between the two plants along the environmental gradient as would be expected according to the stress-gradient and complementary hypotheses when a facilitation process occurs. However, changes in intraspecific diversity of shared AM fungal community between the two plants were observed, highlighting 23 AM fungal OTUs associated with both plants and the highest salinity levels. Consequently, the increase of their abundance and frequency along the environmental gradient might suggest their potential role in the facilitation process that can take place between the two plants. Their use in ecological engineering could also represent promising avenues for improving vegetation restoration in saline Senegalese's lands.


Assuntos
Micorrizas , Prosopis , Cebinae , Plantas/microbiologia , Poaceae/microbiologia , Solo/química , Microbiologia do Solo
5.
Malar J ; 19(1): 252, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32664939

RESUMO

BACKGROUND: Population-wide interventions using malaria testing and treatment might decrease the reservoir of Plasmodium falciparum infection and accelerate towards elimination. Questions remain about their effectiveness and evidence from different transmission settings is needed. METHODS: A pilot quasi-experimental study to evaluate a package of population-wide test and treat interventions was conducted in six health facility catchment areas (HFCA) in the districts of Kanel, Linguère, and Ranérou (Senegal). Seven adjacent HFCAs were selected as comparison. Villages within the intervention HFCAs were stratified according to the 2013 incidences of passively detected malaria cases, and those with an incidence ≥ 15 cases/1000/year were targeted for a mass test and treat (MTAT) in September 2014. All households were visited, all consenting individuals were tested with a rapid diagnostic test (RDT), and, if positive, treated with dihydroartemisinin-piperaquine. This was followed by weekly screening, testing and treatment of fever cases (PECADOM++) until the end of the transmission season in January 2015. Villages with lower incidence received only PECADOM++ or case investigation. To evaluate the impact of the interventions over that transmission season, the incidence of passively detected, RDT-confirmed malaria cases was compared between the intervention and comparison groups with a difference-in-difference analysis using negative binomial regression with random effects on HFCA. RESULTS: During MTAT, 89% (2225/2503) of households were visited and 86% (18,992/22,170) of individuals were tested, for a combined 77% effective coverage. Among those tested, 291 (1.5%) were RDT positive (range 0-10.8 by village), of whom 82% were < 20 years old and 70% were afebrile. During the PECADOM++ 40,002 visits were conducted to find 2784 individuals reporting fever, with an RDT positivity of 6.5% (170/2612). The combination of interventions resulted in an estimated 38% larger decrease in malaria case incidence in the intervention compared to the comparison group (adjusted incidence risk ratio = 0.62, 95% CI 0.45-0.84, p = 0.002). The cost of the MTAT was $14.3 per person. CONCLUSIONS: It was operationally feasible to conduct MTAT and PECADOM++ with high coverage, although PECADOM++ was not an efficient strategy to complement MTAT. The modest impact of the intervention package suggests a need for alternative or complementary strategies.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Testes Diagnósticos de Rotina/estatística & dados numéricos , Malária Falciparum/diagnóstico , Programas de Rastreamento/estatística & dados numéricos , Plasmodium falciparum/isolamento & purificação , Quinolinas/uso terapêutico , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Viabilidade , Feminino , Febre/diagnóstico , Febre/parasitologia , Febre/prevenção & controle , Humanos , Lactente , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Masculino , Pessoa de Meia-Idade , Senegal , Adulto Jovem
6.
Mycorrhiza ; 30(1): 171, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32025891

RESUMO

The authors of the above-mentioned published article inadvertently omitted Dirk Redecker, Dioumacor Fall and Diaminatou Sanogo from the list of authors. The names and their affiliations presented in this paper.

7.
Syst Appl Microbiol ; 42(2): 232-239, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30384991

RESUMO

The aim of this study was to survey the abundance and genetic diversity of legume-nodulating rhizobia (LNR) in the rhizosphere of a salt-tolerant grass, Sporobolus robustus Kunth, in the dry and rainy seasons along a salinity gradient, and to test their effectiveness on Prosopis juliflora (SW.) DC and Vachellia seyal (Del.) P.J.H. Hurter seedlings. The results showed a significant decrease in LNR population density and diversity in response to salinity, particularly during the dry season. A phylogenetic analysis of the 16S-23S rRNA ITS region clustered the 232 rhizobium isolates into three genera and 12 distinct representative genotypes: Mesorhizobium (8 genotypes), Ensifer (2 genotypes) and Rhizobium (2 genotypes). Of these genotypes, 2 were only found in the dry season, 4 exclusively in the rainy season and 6 were found in both seasons. Isolates of the Mesorhizobium and Ensifer genera were more abundant than those of Rhizobium, with 55%, 44% and 1% of the total strains, respectively. The abundance of the Mesorhizobium isolates appeared to increase in the dry season, suggesting that they were more adapted to environmental aridity than Ensifer genospecies. Conversely, Ensifer genospecies were more tolerant of high salinity levels than the other genospecies. However, Ensifer genospeciesproved to be the most efficient strains on P. juliflora and V. seyal seedlings. We concluded that S. robustus hosts efficient rhizobium strains in its rhizosphere, suggesting its ability to act as a nurse plant to facilitate seedling recruitment of P. juliflora and V. seyal in saline soils.


Assuntos
Fabaceae/microbiologia , Filogenia , Poaceae/microbiologia , Prosopis/microbiologia , Rhizobium/classificação , Rizosfera , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Nódulos Radiculares de Plantas/microbiologia , Plantas Tolerantes a Sal/microbiologia , Plântula/microbiologia , Senegal , Análise de Sequência de DNA , Microbiologia do Solo
8.
Mycorrhiza ; 29(1): 77-83, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30460497

RESUMO

Arbuscular mycorrhizal fungi (AMF) play a major role as biofertilizer for sustainable agriculture. Nevertheless, it is still poorly documented whether inoculated AMF can successfully establish in field soils as exotic AMF and improve plant growth and productivity. Further, the fate of an exogenous inoculum is still poorly understood. Here, we pre-inoculated two cultivars (Tasset and Gola) of the fruit tree Ziziphus mauritiana (jujube) with the exotic AM fungus Rhizophagus irregularis isolate IR27 before transplantation in the field. In two experiments, tracking and quantification of R. irregularis IR27 were assessed in a 13-month-old jujube and an 18-month-old jujube in two fields located in Senegal. Our results showed that the inoculant R. irregularis IR27 was quantitatively traced and discriminated from native R. irregularis isolates in roots by using a qPCR assay targeting a fragment of the RNA polymerase II gene (RPB1), and that the inoculum represented only fractions ranging from 11 to 15% of the Rhizophagus genus in the two plantations 13 and 18 months after transplantation, respectively. This study validates the use of the RPB1 gene as marker for a relative quantification of a mycorrhizal inoculant fungus isolate in the field.


Assuntos
Glomeromycota/fisiologia , Micorrizas/fisiologia , Ziziphus/microbiologia , Sequência de Aminoácidos , Proteínas Fúngicas/análise , RNA Polimerase II/análise , Senegal , Alinhamento de Sequência
9.
Contraception ; 98(5): 389-395, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29859148

RESUMO

OBJECTIVE: To evaluate the 12-month total direct costs (medical and nonmedical) of delivering subcutaneous depot medroxyprogesterone acetate (DMPA-SC) under three strategies - facility-based administration, community-based administration and self-injection - compared to the costs of delivering intramuscular DMPA (DMPA-IM) via facility- and community-based administration. STUDY DESIGN: We conducted four cross-sectional microcosting studies in three countries from December 2015 to January 2017. We estimated direct medical costs (i.e., costs to health systems) using primary data collected from 95 health facilities on the resources used for injectable contraceptive service delivery. For self-injection, we included both costs of the actual research intervention and adjusted programmatic costs reflecting a lower-cost training aid. Direct nonmedical costs (i.e., client travel and time costs) came from client interviews conducted during injectable continuation studies. All costs were estimated for one couple year of protection. One-way sensitivity analyses identified the largest cost drivers. RESULTS: Total costs were lowest for community-based distribution of DMPA-SC (US$7.69) and DMPA-IM ($7.71) in Uganda. Total costs for self-injection before adjustment of the training aid were $9.73 (Uganda) and $10.28 (Senegal). After adjustment, costs decreased to $7.83 (Uganda) and $8.38 (Senegal) and were lower than the costs of facility-based administration of DMPA-IM ($10.12 Uganda, $9.46 Senegal). Costs were highest for facility-based administration of DMPA-SC ($12.14) and DMPA-IM ($11.60) in Burkina Faso. Across all studies, direct nonmedical costs were lowest for self-injecting women. CONCLUSIONS: Community-based distribution and self-injection may be promising channels for reducing injectable contraception delivery costs. We observed no major differences in costs when administering DMPA-SC and DMPA-IM under the same strategy. IMPLICATIONS: Designing interventions to bring contraceptive service delivery closer to women may reduce barriers to contraceptive access. Community-based distribution of injectable contraception reduces direct costs of service delivery. Compared to facility-based health worker administration, self-injection brings economic benefits for women and health systems, especially with a lower-cost client training aid.


Assuntos
Agentes Comunitários de Saúde/economia , Anticoncepcionais Femininos/economia , Instalações de Saúde/economia , Acetato de Medroxiprogesterona/economia , África Subsaariana , Anticoncepcionais Femininos/administração & dosagem , Estudos Transversais , Feminino , Humanos , Injeções Intramusculares/economia , Injeções Subcutâneas/economia , Acetato de Medroxiprogesterona/administração & dosagem , Autoadministração/economia , Fatores de Tempo , Viagem/economia
10.
11.
ISME J ; 12(7): 1806-1816, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29535364

RESUMO

Global trade increases plant introductions, but joint introduction of associated microbes is overlooked. We analyzed the ectomycorrhizal fungi of a Caribbean beach tree, seagrape (Coccoloba uvifera, Polygonacaeae), introduced pantropically to stabilize coastal soils and produce edible fruits. Seagrape displays a limited symbiont diversity in the Caribbean. In five regions of introduction (Brazil, Japan, Malaysia, Réunion and Senegal), molecular barcoding showed that seagrape mostly or exclusively associates with Scleroderma species (Basidiomycota) that were hitherto only known from Caribbean seagrape stands. An unknown Scleroderma species dominates in Brazil, Japan and Malaysia, while Scleroderma bermudense exclusively occurs in Réunion and Senegal. Population genetics analysis of S. bermudense did not detect any demographic bottleneck associated with a possible founder effect, but fungal populations from regions where seagrape is introduced are little differentiated from the Caribbean ones, separated by thousands of kilometers, consistently with relatively recent introduction. Moreover, dry seagrape fruits carry Scleroderma spores, probably because, when drying on beach sand, they aggregate spores from the spore bank accumulated by semi-hypogeous Scleroderma sporocarps. Aggregated spores inoculate seedlings, and their abundance may limit the founder effect after seagrape introduction. This rare pseudo-vertical transmission of mycorrhizal fungi likely contributed to efficient and repeated seagrape/Scleroderma co-introductions.


Assuntos
Basidiomycota/fisiologia , Micorrizas/fisiologia , Polygonaceae/microbiologia , Simbiose , Árvores/microbiologia , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/isolamento & purificação , Brasil , Região do Caribe , Japão , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Micorrizas/isolamento & purificação , Plântula/microbiologia , Plântula/fisiologia , Solo , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/isolamento & purificação , Esporos Fúngicos/fisiologia , Árvores/fisiologia
12.
Front Microbiol ; 8: 1426, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28804479

RESUMO

Pterocarpus officinalis (Jacq.) is a leguminous forestry tree species endemic to Caribbean swamp forests. In Guadeloupe, smallholder farmers traditionally cultivate flooded taro (Colocasia esculenta) cultures under the canopy of P. officinalis stands. The role of arbuscular mycorrhizal (AM) fungi in the sustainability of this traditional agroforestry system has been suggested but the composition and distribution of AM fungi colonizing the leguminous tree and/or taro are poorly characterized. An in-depth characterization of root-associated AM fungal communities from P. officinalis adult trees and seedlings and taro cultures, sampled in two localities of Guadeloupe, was performed by pyrosequencing (GS FLX+) of partial 18S rRNA gene. The AM fungal community was composed of 215 operational taxonomic units (OTUs), belonging to eight fungal families dominated by Glomeraceae, Acaulosporaceae, and Gigasporaceae. Results revealed a low AM fungal community membership between P. officinalis and C. esculenta. However, certain AM fungal community taxa (10% of total community) overlapped between P. officinalis and C. esculenta, notably predominant Funneliformis OTUs. These findings provide new perspectives in deciphering the significance of Funneliformis in nutrient exchange between P. officinalis and C. esculenta by forming a potential mycorrhizal network.

14.
Mycorrhiza ; 25(7): 547-59, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25711744

RESUMO

We studied belowground and aboveground diversity and distribution of ectomycorrhizal (EM) fungal species colonizing Coccoloba uvifera (L.) L. (seagrape) mature trees and seedlings naturally regenerating in four littoral forests of the Guadeloupe island (Lesser Antilles). We collected 546 sporocarps, 49 sclerotia, and morphotyped 26,722 root tips from mature trees and seedlings. Seven EM fungal species only were recovered among sporocarps (Cantharellus cinnabarinus, Amanita arenicola, Russula cremeolilacina, Inocybe littoralis, Inocybe xerophytica, Melanogaster sp., and Scleroderma bermudense) and one EM fungal species from sclerotia (Cenococcum geophilum). After internal transcribed spacer (ITS) sequencing, the EM root tips fell into 15 EM fungal taxa including 14 basidiomycetes and 1 ascomycete identified. Sporocarp survey only weakly reflected belowground assessment of the EM fungal community, although 5 fruiting species were found on roots. Seagrape seedlings and mature trees had very similar communities of EM fungi, dominated by S. bermudense, R. cremeolilacina, and two Thelephoraceae: shared species represented 93 % of the taxonomic EM fungal diversity and 74 % of the sampled EM root tips. Furthermore, some significant differences were observed between the frequencies of EM fungal taxa on mature trees and seedlings. The EM fungal community composition also varied between the four investigated sites. We discuss the reasons for such a species-poor community and the possible role of common mycorrhizal networks linking seagrape seedlings and mature trees in regeneration of coastal forests.


Assuntos
Microbiota , Micorrizas/fisiologia , Polygonaceae/microbiologia , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/fisiologia , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/fisiologia , Florestas , Genes Fúngicos , Guadalupe , Dados de Sequência Molecular , Micorrizas/classificação , Micorrizas/genética , Plântula/microbiologia , Análise de Sequência de DNA , Árvores/microbiologia
15.
Microb Ecol ; 68(2): 329-38, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24595907

RESUMO

Pterocarpus officinalis Jacq. is a legume tree native to the Caribbean islands and South America growing as a dominant species in swamp forests. To analyze (i) the genetic diversity and (ii) the symbiotic properties of its associated nitrogen-fixing soil bacteria, root nodules were collected from P. officinalis distributed in 16 forest sites of the Caribbean islands and French Guiana. The sequencing of the 16S-23S ribosomal RNA intergenic spacer region (ITS) showed that all bacteria belonged to the Bradyrhizobium genus. Bacteria isolated from insular zones showed very close sequence homologies with Bradyrhizobium genospecies V belonging to the Bradyrhizobium japonicum super-clade. By contrast, bacteria isolated from continental region displayed a larger genetic diversity and belonged to B. elkanii super-clade. Two strains from Puerto Rico and one from French Guiana were not related to any known sequence and could be defined as a new genospecies. Inoculation experiments did not show any host specificity of the Bradyrhizobium strains tested in terms of infectivity. However, homologous Bradyrhizobium sp. strain-P. officinalis provenance associations were more efficient in terms of nodule production, N acquisition, and growth than heterologous ones. The dominant status of P. officinalis in the islands may explain the lower bacterial diversity compared to that found in the continent where P. officinalis is associated with other leguminous tree species. The specificity in efficiency found between Bradyrhizobium strains and host tree provenances could be due to a coevolution process between both partners and needs to be taken in consideration in the framework of rehabilitation plantation programs.


Assuntos
Bradyrhizobium/classificação , Variação Genética , Filogenia , Pterocarpus/microbiologia , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Florestas , Guiana Francesa , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Simbiose , Índias Ocidentais
16.
C R Biol ; 336(5-6): 265-72, 2013.
Artigo em Francês | MEDLINE | ID: mdl-23916201

RESUMO

The overexploitation of natural resources, resulting in an increased need for arable lands by local populations, causes a serious dysfunction in the soil's biological functioning (mineral deficiency, salt stress, etc.). This dysfunction, worsened by the climatic conditions (drought), requires the implementation of ecological engineering strategies allowing the rehabilitation of degraded areas through the restoration of essential ecological services. The first symptoms of weathering processes of soil quality in tropical and Mediterranean environments result in an alteration of the plant cover structure with, in particular, the pauperization of plant species diversity and abundance. This degradation is accompanied by a weakening of soils and an increase of the impact of erosion on the surface layer resulting in reduced fertility of soils in terms of their physicochemical characteristics as well as their biological ones (e.g., soil microbes). Among the microbial components particularly sensitive to erosion, symbiotic microorganisms (rhizobia, Frankia, mycorrhizal fungi) are known to be key components in the main terrestrial biogeochemical cycles (C, N and P). Many studies have shown the importance of the management of these symbiotic microorganisms in rehabilitation and revegetation strategies of degraded environments, but also in improving the productivity of agrosystems. In particular, the selection of symbionts and their inoculation into the soil were strongly encouraged in recent decades. These inoculants were selected not only for their impact on the plant, but also for their ability to persist in the soil at the expense of the residual native microflora. The performance of this technique was thus evaluated on the plant cover, but its impact on soil microbial characteristics was totally ignored. The role of microbial diversity on productivity and stability (resistance, resilience, etc.) of eco- and agrosystems has been identified relatively recently and has led to a questioning of the conceptual bases of controlled inoculation in sustainable land management. It has been suggested that the environmental characteristics of the area to rehabilitate should be taken into account, and more particularly its degradation level in relation to the threshold of ecological resilience. This consideration should lead to the optimization of the cultural practices to either (i) restore the original properties of an ecosystem in case of slightly degraded environments or (ii) transform an ecosystem in case of highly degraded soils (e.g., mine soils). In this chapter, we discuss, through various examples of experiments conducted in tropical and Mediterranean areas, the performance of different strategies to manage the microbial potential in soils (inoculation of exotic vs. native species, inoculation or controlled management potential microbial stratum via aboveground vegetation, etc.) based on the level of environmental degradation.


Assuntos
Micorrizas , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Microbiologia do Solo , Árvores , Agricultura , Conservação dos Recursos Naturais , Secas , Ecologia , Eficiência , Meio Ambiente , Região do Mediterrâneo , Marrocos , Solo/química , Especificidade da Espécie , Clima Tropical
17.
Fungal Biol ; 117(5): 311-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23719218

RESUMO

Moesziomyces penicillariae (Brefield) Vànky is a basidiomycete fungus responsible for smut disease on pearl millet, an important staple food in the sub-Sahelian zone. We revisited the life cycle of this fungus. Unlike other Ustilaginales, mating of sporidia was never observed and monoclonal cultures of monokaryotic sporidia were infectious in the absence of mating with compatible partner. These data argued for an atypical monokaryotic diploid cell cycle of M. penicillariae, where teliospores only form solopathogenic sporidia. After inoculation of monoclonal solopathogenic strains on spikelets, the fungus infects the ovaries and induces the folding of the micropilar lips, as observed during early pollination steps. The infected embryo then becomes disorganized and the fungus invades peripheral ovary tissues before sporulating. We evaluated the systemic growth abilities of the fungus. After root inoculation, mycelium was observed around and inside the roots. As argued by transmission electron microscopy (TEM) observations and polymerase chain reaction (PCR) detection using specific primers for M. penicillariae, the fungus can grow from roots to the caulinar meristems. In spite of this systemic growth, no sori were formed on the varieties of pearl millet tested after root inoculation. All together, these data suggest that the reduced life cycle of M. penicillariae--i.e. dispersal of 'ready to infect' solopathogenic sporidia, floral infection--is an adaptation to the aetiology of this disease to short-cycle pearl millet varieties from the sub-Sahel.


Assuntos
Interações Hospedeiro-Patógeno , Pennisetum/microbiologia , Doenças das Plantas/microbiologia , Ustilaginales/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Ustilaginales/genética , Ustilaginales/fisiologia
19.
Mycorrhiza ; 22(1): 1-29, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21989710

RESUMO

The diversity, ecology and function of ectomycorrhizal (EM) fungi and ectomycorrhizas (ECMs) on tropical African tree species are reviewed here. While ECMs are the most frequent mycorrhizal type in temperate and boreal forests, they concern an economically and ecologically important minority of plants in African tropical forests. In these African tropical forests, ECMs are found mainly on caesalpionioid legumes, Sarcolaenaceae, Dipterocarpaceae, Asterpeiaceae, Phyllantaceae, Sapotaceae, Papilionoideae, Gnetaceae and Proteaceae, and distributed in open, gallery and rainforests of the Guineo-Congolian basin, Zambezian Miombo woodlands of East and South-Central Africa and Sudanian savannah woodlands of the sub-sahara. Overall, EM status was confirmed in 93 (26%) among 354 tree species belonging to EM genera. In addition, 195 fungal taxa were identified using morphological descriptions and sequencing of the ML5/ML6 fragment of sporocarps and ECMs from West Africa. Analyses of the belowground EM fungal communities mostly based on fungal internal transcribed spacer sequences of ECMs from Continental Africa, Madagascar and the Seychelles also revealed more than 350 putative species of EM fungi belonging mainly to 18 phylogenetic lineages. As in temperate forests, the /russula-lactarius and /tomentella-thelephora lineages dominated EM fungal flora in tropical Africa. A low level of host preference and dominance of multi-host fungal taxa on different African adult tree species and their seedlings were revealed, suggesting a potential for the formation of common ectomycorrhizal networks. Moreover, the EM inoculum potential in terms of types and density of propagules (spores, sclerotia, EM root fragments and fragments of mycelia strands) in the soil allowed opportunistic root colonisation as well as long-term survival in the soil during the dry season. These are important characteristics when choosing an EM fungus for field application. In this respect, Thelephoroid fungal sp. XM002, an efficient and competitive broad host range EM fungus, possessed these characteristics and appeared to be a good candidate for artificial inoculation of Caesalps and Phyllanthaceae seedlings in nurseries. However, further efforts should be made to assess the genetic and functional diversity of African EM fungi as well as the EM status of unstudied plant species and to strengthen the use of efficient and competitive EM fungi to improve production of ecologically and economically important African multipurpose trees in plantations.


Assuntos
Variação Genética/genética , Especificidade de Hospedeiro/fisiologia , Micorrizas/fisiologia , Simbiose/fisiologia , Árvores/microbiologia , África , Basidiomycota/genética , Basidiomycota/fisiologia , Ecologia , Fabaceae/microbiologia , Fabaceae/fisiologia , Fungos/genética , Fungos/fisiologia , Micorrizas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Plântula/microbiologia , Plântula/fisiologia , Sementes/microbiologia , Sementes/fisiologia , Árvores/fisiologia , Clima Tropical
20.
Mycorrhiza ; 22(3): 175-87, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21660609

RESUMO

Fifty years of overexploitation have disturbed most forests within Sahelian areas. Exotic fast growing trees (i.e., Australian Acacia species) have subsequently been introduced for soil improvement and fuelwood production purposes. Additionally, rhizobial or mycorrhizal symbioses have sometimes been favored by means of controlled inoculations to increase the performance of these exotic trees in such arid and semiarid zones. Large-scale anthropogenic introduction of exotic plants could also threaten the native biodiversity and ecosystem resilience. We carried out an experimental reforestation in Burkina Faso in order to study the effects of Acacia holosericea mycorrhizal inoculation on the soil nutrient content, microbial soil functionalities and mycorrhizal soil potential. Treatments consisted of uninoculated A. holosericea, preplanting fertilizer application and arbuscular mycorrhizal inoculation with Glomus intraradices. Our results showed that (i) arbuscular mycorrhizal (AM) inoculation and prefertilizer application significantly improved A. holosericea growth after 4 years of plantation and (ii) the introduction of A. holosericea trees significantly modified soil microbial functions. The results clearly showed that the use of exotic tree legume species should be directly responsible for important changes in soil microbiota with great disturbances in essential functions driven by microbial communities (e.g., catabolic diversity and C cycling, phosphatase activity and P availability). They also highlighted the importance of AM symbiosis in the functioning of soils and forest plantation performances. The AM effect on soil functions was significantly correlated with the enhanced mycorrhizal soil potential recorded in the AM inoculation treatment.


Assuntos
Acacia/microbiologia , Ecossistema , Glomeromycota/fisiologia , Micorrizas/fisiologia , Microbiologia do Solo , Árvores/microbiologia , Acacia/crescimento & desenvolvimento , África do Norte , Fertilizantes/análise , Raízes de Plantas/microbiologia , Solo/análise , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...