Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(9): 3203-3213, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425510

RESUMO

The valence-shell dissociative photoionization of methyl iodide (CH3I) is studied using double imaging photoelectron photoion coincidence (i2 PEPICO) spectroscopy in combination with highly-tunable synchrotron radiation from synchrotron SOLEIL. The experimental results are complemented by new high-level ab initio calculations of the potential energy curves of the relevant electronic states of the methyl iodide cation (CH3I+). An elusive conical intersection is found to mediate internal conversion from the initially populated first excited state, CH3I+(Ã2A1), into the ground cationic state, leading to the formation of methyl ions (CH3+). The reported threshold photoelectron spectrum for CH3+ reveals that the ν5 scissors vibrational mode promotes the access to this conical intersection and hence, the transfer of population. An intramolecular charge transfer takes place simultaneously, prior to dissociation. Upon photoionization into the second excited cationic state, CH3I+(B̃2E), a predissociative mechanism is shown to lead to the formation of atomic I+.

2.
Chem Mater ; 35(22): 9603-9612, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38047181

RESUMO

Metal nanocrystals (NCs) display unique physicochemical features that are highly dependent on nanoparticle dimensions, anisotropy, structure, and composition. The development of synthesis methodologies that allow us to tune such parameters finely emerges as crucial for the application of metal NCs in catalysis, optical materials, or biomedicine. Here, we describe a synthetic methodology to fabricate hollow multimetallic heterostructures using a combination of seed-mediated growth routes and femtosecond-pulsed laser irradiation. The envisaged methodology relies on the coreduction of Ag and Pd ions on gold nanorods (Au NRs) to form Au@PdAg core-shell nanostructures containing small cavities at the Au-PdAg interface. The excitation of Au@PdAg NRs with low fluence femtosecond pulses was employed to induce the coalescence and growth of large cavities, forming multihollow anisotropic Au@PdAg nanostructures. Moreover, single-hollow alloy AuPdAg could be achieved in high yield by increasing the irradiation energy. Advanced electron microscopy techniques, energy-dispersive X-ray spectroscopy (EDX) tomography, X-ray absorption near-edge structure (XANES) spectroscopy, and finite differences in the time domain (FDTD) simulations allowed us to characterize the morphology, structure, and elemental distribution of the irradiated NCs in detail. The ability of the reported synthesis route to fabricate multimetallic NCs with unprecedented hollow nanostructures offers attractive prospects for the fabrication of tailored high-entropy alloy nanoparticles.

3.
J Chem Phys ; 159(7)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37581421

RESUMO

Multiphoton ionization (MPI) of alkyl iodides (RI, R = CnH2n+1, n = 1-4) has been investigated with femtosecond laser pulses centered at 800 and 400 nm along with photoelectron imaging detection. In addition, the ultraviolet (UV)-vacuum ultraviolet (VUV) absorption spectra of gas-phase RIs have been measured in the photon energy range of 5-11 eV using the VUV Fourier transform spectrometer at the VUV DESIRS beamline of the synchrotron SOLEIL facility. The use of high-laser-field strengths in matter-radiation interaction generates highly non-linear phenomena, such as the Stark shift effect, which distorts the potential energy surfaces of molecules by varying both the energy of electronic and rovibrational states and their ionization energies. The Stark shift can then generate resonances between intermediate states and an integer number of laser photons of a given wavelength, which are commonly known as Freeman resonances. Here, we study how the molecular structure of linear and branched alkyl iodides affects the UV-VUV absorption spectrum, the MPI process, and the generation of Freeman resonances. The obtained results reveal a dominant resonance in the experiments at 800 nm, which counter-intuitively appears at the same photoelectron kinetic energy in the whole alkyl iodide series. The ionization pathways of this resonance strongly involve the 6p(2E3/2) Rydberg state with different degrees of vibrational excitation, revealing an energy compensation effect as the R-chain complexity increases.

4.
J Chem Phys ; 159(6)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37555612

RESUMO

The photodissociation dynamics leading to the C-N bond cleavage in methylamine (CH3NH2) are investigated upon photoexcitation in the blue edge of the first absorption A-band, in the 198-204 nm range. Velocity map images of the generated methyl (CH3) fragment detected in specific vibrational modes, i.e., ν = 0, ν1 = 1, and ν2 = 1, through resonance enhanced multiphoton ionization, are presented along with the corresponding translational energy distributions and the angular analysis. The experimental results are complemented by high-level ab initio calculations of potential energy curves as a function of the C-N bond distance. While a similar single Boltzmann-type contribution is observed in all the translational energy distributions measured, the speed-dependent anisotropy parameter obtained through the angular analysis reveals the presence of two different mechanisms. Prompt dissociation through the conical intersection between the Ã1A' first excited state and the ground state located in the exit channel is, indeed, revealed as a minor channel. In contrast, slow dissociation on the ground state, presumably from frustrated N-H bond cleavage trajectories, constitutes the major reaction pathway leading to the methyl formation.

5.
J Chem Phys ; 158(23)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37326159

RESUMO

The photodissociation dynamics of methylamine (CH3NH2) upon excitation in the blue edge of the first absorption A-band, in the 198-203 nm range, are investigated by means of nanosecond pump-probe laser pulses and velocity map imaging combined with H(2S)-atom detection through resonance enhanced multiphoton ionization. The images and corresponding translational energy distributions for the H-atoms produced show three different contributions associated with three reaction pathways. The experimental results are complemented by high-level ab initio calculations. The potential energy curves computed as a function of the N-H and C-H bond distances allow us to draw a picture of the different mechanisms. Major dissociation occurs through N-H bond cleavage and it is triggered by an initial geometrical change, i.e., from a pyramidal configuration of the C-NH2 with respect to the N atom to a planar geometry. The molecule is then driven into a conical intersection (CI) seam where three outcomes can take place: first, threshold dissociation into the second dissociation limit, associated with the formation of CH3NH(Ã), is observed; second, direct dissociation after passage through the CI leading to the formation of ground state products; and third, internal conversion into the ground state well in advance to dissociation. While the two last pathways were previously reported at a variety of wavelengths in the 203-240 nm range, the former had not been observed before to the best of our knowledge. The role of the CI and the presence of an exit barrier in the excited state, which modify the dynamics leading the two last mechanisms, are discussed considering the different excitation energies used.


Assuntos
Luz , Metilaminas
6.
Phys Chem Chem Phys ; 25(16): 11684-11696, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057377

RESUMO

The site-specific hydrogen-atom elimination mechanism previously reported for photoexcited ethyl radicals (CH3CH2) [D. V. Chicharro et al., Chem. Sci., 2019, 10, 6494] is interrogated in the photodissociation of the ethyl isotopologues CD3CD2, CH3CD2 and CD3CH2 through the velocity map imaging (VMI) detection of the produced hydrogen- and deuterium-atoms. The radicals, generated in situ from photolysis of a precursor using the same laser pulse employed in their excitation to Rydberg states, decompose along the Cα-H/D and Cß-H/D reaction coordinates through coexisting statistical and site-specific mechanisms. The experiments are carried out at two excitation wavelengths, 201 and 193 nm. The comparison between both sets of results provides accurate information regarding the primary role in the site-specific mechanism of the radical internal reservoir. Importantly, at 193 nm excitation, higher energy dissociation channels (not observed at 201 nm) producing low-recoil H/D-atoms become accessible. High-level ab initio calculations of potential energy curves and the corresponding non-adiabatic interactions allow us to rationalize the experimental results in terms of competitive non-adiabatic decomposition paths. Finally, the adiabatic behavior of the conical intersections in the face of several vibrational modes - the so-called vibrational promoting modes - is discussed.

7.
Phys Chem Chem Phys ; 24(48): 29616-29628, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36449016

RESUMO

Multiphoton ionization (MPI) of methyl iodide, CH3I, has been investigated with the photoelectron imaging (PEI) technique, using high intensity femtosecond laser pulses at different central wavelengths. The use of high laser field strengths alters the way in which matter-radiation interaction takes place. This generates highly nonlinear phenomena, among which we can highlight the Stark shift effect. It can distort the potential energy surfaces of atoms and molecules, varying both the energy of electronic and rovibrational states of these systems and their ionization potentials. In this way, the Stark shift can generate resonances between intermediate states and an integer number of laser photons of a given wavelength, which would be absent in the low intensity regime. The main purpose of this work is the generation, detection and characterization of resonances produced by the Stark shift, commonly known as Freeman resonances, induced by multiphoton ionization of gas-phase CH3I at different laser wavelengths. The results obtained reveal that a multitude of resonances are induced in the ionization of CH3I in the range of intensities employed, involving several Rydberg states. Ionization pathways associated with different degrees of vibrational excitation in both the intermediate states and the molecular cation generated in each of the experiments are proposed.

8.
J Phys Chem A ; 126(45): 8404-8422, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36322967

RESUMO

The photodissociation dynamics and photofragment alignment of bromoiodomethane (CH2BrI) have been studied at 193 nm using a double experimental and theoretical approach. In addition, the ultraviolet (UV)-vacuum ultraviolet (VUV) absorption spectrum of gas phase CH2BrI has been measured in the photon energy range of 5-11 eV using the VUV Fourier transform spectrometer (FTS) at the VUV beamline DESIRS of the synchrotron SOLEIL facility. The slice imaging technique in combination with resonance enhanced multiphoton ionization (REMPI) detection of the Br(2PJ) and I(2PJ) (with J = 3/2 and 1/2 for Br/I and Br*/I*, respectively) atomic photofragments have been used to produce experimental translational energy and angular distributions, which were analyzed to deliver, on one hand, the partitioning of the available energy among the different degrees-of-freedom of the photofragments and, on the other, the photofragment polarization in terms of aqk(p) alignment parameters. The experimental measurements were rationalized in terms of high-level ab initio calculations of vertical excitation energies, transition dipole moments and potential energy curves (PECs) along different reaction coordinates to provide a complete picture of the photodissociation dynamics. The results indicate that for excitation at 193 nm, prompt C-X cleavage (with X being either halogen atom, Br or I) competes with fast internal conversion and consequent stochastic dissociation in lower electronic states. In the case of the CH2Br + I(2P3/2)/I*(2P1/2) channels, the dynamics are greatly biased toward the stochastic dissociation process due to both the particular PECs landscape and the unfavored excitation of the CH2BrI ensemble with respect to the C-I molecular axis at this excitation energy. The ab initio PECs provide a tentative path for the fast dissociation process in either case. For the C-Br bond breakage, excitation to the 13A' electronic state and predissociation through the 11A'/11A″ or 12A'/12A″ states, leading to direct dissociation through the 10A'/9A″ states, appear as the most consistent dynamics. For the C-I channel, predissociation does not become a reliable possibility and a fast internal conversion may precede dissociation through the repulsive 6A'/6A″ and 4A'/4A″ states. The large content of rotational and vibrational excitation of the polyatomic cofragments is justified through the soft impulsive model and the geometrical changes produced along the dissociation pathway. Strikingly, the aqk(p) alignment parameters obtained for the Br(2P3/2) and I(2P3/2) photoproducts indicate that the rotational angular momentum of the CH2X (X = I or Br) cofragment appears highly constrained along the recoil direction. Finally, this work presents a highly plausible explanation for the branching ratio of secondary dissociation processes in the photodynamics of CH2BrI at 193 nm.

10.
J Chem Phys ; 156(11): 114304, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35317567

RESUMO

The photodissociation dynamics of alkyl iodides along the C-I bond are captured by attosecond extreme-ultraviolet (XUV) transient absorption spectroscopy employing resonant ∼20 fs UV pump pulses. The methodology of previous experiments on CH3I [Chang et al., J. Chem. Phys. 154, 234301 (2021)] is extended to the investigation of a C-I bond-breaking reaction in the dissociative A-band of C2H5I, i-C3H7I, and t-C4H9I. Probing iodine 4d core-to-valence transitions in the XUV enables one to map wave packet bifurcation at a conical intersection in the A-band as well as coherent vibrations in the ground state of the parent molecules. Analysis of spectroscopic bifurcation signatures yields conical intersection crossing times of 15 ± 4 fs for CH3I, 14 ± 5 fs for C2H5I, and 24 ± 4 fs for i-C3H7I and t-C4H9I, respectively. Observations of coherent vibrations, resulting from a projection of A-band structural dynamics onto the ground state by resonant impulsive stimulated Raman scattering, indirectly reveal multimode C-I stretch and CCI bend vibrations in the A-bands of C2H5I, i-C3H7I, and t-C4H9I.

11.
J Phys Chem A ; 125(28): 6122-6130, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34232644

RESUMO

VUV photoionization of the CHnI radicals (with n = 0, 1, and 2) is investigated by means of synchrotron radiation coupled with a double imaging photoion-photoelectron coincidence spectrometer. Photoionization efficiencies and threshold photoelectron spectra (TPES) for photon energies ranging between 9.2 and 12.0 eV are reported. An adiabatic ionization energy (AIE) of 8.334 ± 0.005 eV is obtained for CH2I, which is in good agreement with previous results [8.333 ± 0.015 eV, Sztáray J. Chem. Phys. 2017, 147, 013944], while for CI an AIE of 8.374 ± 0.005 eV is measured for the first time and a value of ∼8.8 eV is estimated for CHI. Ab initio calculations have been carried out for the ground state of the CH2I radical and for the ground state and excited states of the radical cation CH2I+, including potential energy curves along the C-I coordinate. Franck-Condon factors are calculated for transitions from the CH2I(X̃2B1) ground state of the neutral radical to the ground state and excited states of the radical cation. The TPES measured for the CH2I radical shows several structures that correspond to the photoionization into excited states of the radical cation and are fully assigned on the basis of the calculations. The TPES obtained for the CHI is characterized by a broad structure peaking at 9.335 eV, which could be due to the photoionization from both the singlet and the triplet states and into one or more electronic states of the cation. A vibrational progression is clearly observed in the TPES for the CI radical and a frequency for the C-I stretching mode of 760 ± 60 cm-1 characterizing the CI+ electronic ground state has been extracted.

12.
Phys Chem Chem Phys ; 23(3): 2458-2468, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33463638

RESUMO

A prompt site-specific hydrogen-atom elimination from the α-carbon atom (Cα) has been recently reported to occur in the photodissociation of ethyl radicals following excitation at 201 nm [Chicharro et al., Chem. Sci., 2019, 10, 6494]. Such pathway was accessed by means of an initial ro-vibrational energy characterizing the radicals produced by in situ photolysis of a precursor. Here, we present experimental evidence of a similar dynamics in a series of alkyl radicals (C2H5, n-C3H7, n-C4H9, and i-C3H7) containing the same reaction coordinate, but different extended structures. The main requirements for the site-specific mechanism in the studied radicals, namely a rather high content of internal energy prior to dissociation and the participation of vibrational promoting modes, is discussed in terms of the chemical structure of the radicals. The methyl deformation mode in all alkyl radicals along with the CH bending motion in i-C3H7 appear to promote this fast H-atom elimination channel. The photodissociation dynamics of the simplest unsaturated alkyl radical, the vinyl radical (C2H3), is also discussed, showing no signal of site-specific fast H-atom elimination. The results are complemented with high-level ab initio electronic structure calculations of potential energy curves of the vinyl radical, which are compared with those previously reported for the ethyl radical.

13.
Nanomaterials (Basel) ; 10(11)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182626

RESUMO

Nanostructured thin films of Co-doped zinc sulfide were synthesized through femtosecond pulsed laser deposition. The scheme involved ablation of physically mixed Co and ZnS with pairs of ultrashort pulses separated in time in the 0-300 ps range. In situ monitorization of the deposition process was carried out through a simultaneous reflectivity measurement. The crystallinity of generated nanoparticles and the inclusion of Co in the ZnS lattice is demonstrated by transmission electron microscopy and energy dispersive X-ray microanalysis (TEM-EDX) characterization. Surface morphology, Raman response, and photoluminescence of the films have also been assessed. The role of interpulse temporal separation is most visible in the thickness of the films obtained at the same total fluence, with much thicker films deposited with short delays than with individual uncoupled pulses. The proportion of Co in the synthesized doped ZnS nanoparticles is found to be substantially lower than the original proportion, and practically independent on interpulse delay.

14.
J Colloid Interface Sci ; 575: 119-129, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32361044

RESUMO

Upconversion nanoparticles (UCNP) are increasingly used due to their advantages over conventional fluorophores, and their use as resonance energy transfer (RET) donors has permitted their application as biosensors when they are combined with appropriate RET acceptors such as graphene oxide (GO). However, there is a lack of knowledge about the design and influence that GO composition produces over the quenching of these nanoparticles that in turn will define their performance as sensors. In this work, we have analysed the total quenching efficiency, as well as the actual values corresponding to the RET process between UCNPs and GO sheets with three different chemical compositions. Our findings indicate that excitation and emission absorption by GO sheets are the major contributor to the observed luminescence quenching in these systems. This challenges the general assumption that UCNPs luminescence deactivation by GO is caused by RET. Furthermore, RET efficiency has been theoretically calculated by means of a semiclassical model considering the different nonradiative energy transfer rates from each Er3+ ion to the GO thin film. These theoretical results highlight the relevance of the relative positions of the Er3+ ions inside the UCNP with respect to the GO sheet in order to explain the RET-induced efficiency measurements.

15.
Sci Rep ; 10(1): 6700, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317645

RESUMO

The correlation between chemical structure and predissociation dynamics has been evaluated for a series of linear and branched alkyl iodides with increasing structural complexity by means of femtosecond time-resolved velocity map imaging experiments following excitation on the second absorption band (B-band) at around 201 nm. The time-resolved images for the iodine fragment are reported and analyzed in order to extract electronic predissociation lifetimes and the temporal evolution of the anisotropy while the experimental results are supported by ab initio calculations of the potential energy curves as a function of the C-I distance. Remarkable similarities are observed for all molecules consistent with a major predissociation of the initially populated bound Rydberg states 6A″ and 7A' through a crossing with the purely repulsive states 7A″, 8A' and 8A″ leading to a major R + I*(2P1/2) (R = CH3, C2H5, n-C3H7, n-C4H9, i-C3H7 and t-C4H9) dissociation channel. The reported electronic predissociation lifetimes are found to decrease for an increasing size of the linear radical, reflecting the shifts observed in the position of the crossings in the potential energy curves, and very likely a greater non-adiabatic coupling between the initially populated Rydberg states and the repulsive states leading to dissociation induced by other coordinates associated to key vibrational normal modes. The loss of anisotropy is fully accounted for by the parent molecular rotation during predissociation and the rotational temperature of the parent molecule in the molecular beam is reasonably derived.

16.
Phys Chem Chem Phys ; 22(23): 12886-12893, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32315003

RESUMO

The valence-shell photoionization of formaldehyde is investigated by means of combining Photo-Electron Photo-Ion COincidence (PEPICO) experiments and ab initio calculations. The formation of three ion fragments: HCO+, CO+ and H, via dissociative photoionization following excitation at 17 eV is discussed. The experimental results consisting of electron-ion kinetic energy correlation diagrams for the corresponding coincident events, i.e. (HCO+, e-), (CO+, e-) and (H, e-), as well as the fragment abundance as a function of the binding energy, are complemented by high level electronic structure calculations including potential energy curves and on-the-fly trajectories. The results are consistent with a main relaxation process via internal conversion into rovibrationally excited levels of the H2CO+ ground state, followed by statistical dissociation, preferentially into HCO+. The analysis of the experimental results reveals nevertheless the signature of a conical intersection controlling the dynamics and favoring dissociation into the molecular channel, CO+ + H2. In addition, the minor formation of the H ion is suggested to occur through a roaming pathway on the cation excited state.

17.
Phys Chem Chem Phys ; 22(10): 5995-6003, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32123886

RESUMO

The photodissociation of the allyl radical (CH2[double bond, length as m-dash]CH-CH2˙) following excitation between 216 and 243 nm has been investigated employing velocity map imaging in conjunction with resonance enhanced multiphoton ionization to detect the hydrogen atom and CH3(ν = 0) produced. The translational energy distributions for the two fragments are reported and analyzed along with the corresponding fragment ion angular distributions. The results are discussed in terms of the different reactions pathways characterizing the hydrogen atom elimination and the minor methyl formation. On one hand, the angular analysis provides evidence of an additional mechanism, not reported before, leading to prompt dissociation and fast hydrogen atoms. On the other hand, the methyl elimination channel has been characterized as a function of the excitation energy and the contribution of three reaction pathways: single 1,3-hydrogen shift, double 1,2-hydrogen shift and through the formation of vinylidene have been discussed. Contrary to previous predictions, the vinylidene channel, which plays a significant role at lower energies, seems to vanish following excitation on the E[combining tilde]2B1(3px) excited state at λ≤ 230 nm.

18.
J Chem Phys ; 152(8): 084308, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32113357

RESUMO

The photochemical dynamics of double-bond-containing hydrocarbons is exemplified by the smallest alkenes, ethylene and butadiene. Chemical substituents can alter both decay timescales and photoproducts through a combination of inertial effects due to substituent mass, steric effects due to substituent size, and electronic (or potential) effects due to perturbative changes to the electronic potential energy surface. Here, we demonstrate the interplay of different substituent effects on 1,3-butadiene and its methylated derivatives using a combination of ab initio simulation of nonadiabatic dynamics and time-resolved photoelectron spectroscopy. The purely inertial effects of methyl substitution are simulated through the use of mass 15 "heavy-hydrogen" atoms. As expected from both inertial and electronic influences, the excited-state dynamics is dominated by pyramidalization at the unsubstituted carbon sites. Although the electronic effects of methyl group substitution are weak, they alter both decay timescales and branching ratios by influencing the initial path taken by the excited wavepacket following photoexcitation.

19.
J Phys Chem Lett ; 11(3): 670-677, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31905285

RESUMO

The irradiation of spherical gold nanoparticles (AuNPs) with nanosecond laser pulses induces shape transformations yielding nanocrystals with an inner cavity. The concentration of the stabilizing surfactant, the use of moderate pulse fluences, and the size of the irradiated AuNPs determine the efficiency of the process and the nature of the void. Hollow nanocrystals are obtained when molecules from the surrounding medium (e.g., water and organic matter derived from the surfactant) are trapped during laser pulse irradiation. These experimental observations suggest the existence of a subtle balance between the heating and cooling processes experienced by the nanocrystals, which induce their expansion and subsequent recrystallization keeping exogenous matter inside. The described approach provides valuable insight into the mechanism of interaction of a pulsed nanosecond laser with AuNPs, along with interesting prospects for the development of hollow plasmonic nanoparticles with potential applications related to gas and liquid storage at the nanoscale.

20.
J Chem Phys ; 152(1): 014304, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914745

RESUMO

Clocking of electronically and vibrationally state-resolved channels of the fast photodissociation of CH3I in the A-band is re-examined in a combined experimental and theoretical study. Experimentally, a femtosecond pump-probe scheme is employed in the modality of resonant probing by resonance enhanced multiphoton ionization (REMPI) of the methyl fragment in different vibrational states and detection through fragment velocity map ion (VMI) imaging as a function of the time delay. We revisit excitation to the center of the A-band at 268 nm and report new results for excitation to the blue of the band center at 243 nm. Theoretically, two approaches have been employed to shed light into the observations: first, a reduced dimensionality 4D nonadiabatic wavepacket calculation using the potential energy surfaces by Xie et al. [J. Phys. Chem. A 104, 1009 (2000)]; and second, a full dimension 9D trajectory surface-hopping calculation on the same potential energy surfaces, including the quantization of vibrational states of the methyl product. In addition, high level ab initio electronic structure calculations have been carried out to describe the CH3 3pz Rydberg state involved in the (2 + 1) REMPI probing process, as a function of the carbon-iodine (C-I) distance. A general qualitative agreement is obtained between experiment and theory, but the effect of methyl vibrational excitation in the umbrella mode on the clocking times is not well reproduced. The theoretical results reveal that no significant effect on the state-resolved appearance times is exerted by the nonadiabatic crossing through the conical intersection present in the first absorption band. The vibrationally state resolved clocking times observed experimentally can be rationalized when the (2 + 1) REMPI probing process is considered. None of the other probing methods applied thus far, i.e., multiphoton ionization photoelectron spectroscopy, soft X-ray inner-shell photoelectron spectroscopy, VUV single-photon ionization, and XUV core-to-valence transient absorption spectroscopy, have been able to provide quantum state-resolved (vibrational) clocking times. More experiments would be needed to disentangle the fine details in the clocking times and dissociation dynamics arising from the detection of specific quantum-states of the molecular fragments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...