Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 856(Pt 1): 159124, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179842

RESUMO

Microbial Electrosynthesis (MES) has been widely applied for acetic acid (HA) production from CO2 and electricity. Ethanol (EtOH) has a higher market value than HA, and wide application in industry and as a biofuel. However, it has only been obtained sporadically and at low concentrations, probably due to sub-optimal operating conditions. This study aimed at enhancing EtOH productivity in MES cells by jointly optimising key operation parameters, including pH, H2 and CO2 partial pressure (pH2 and pCO2), and HA concentration, to promote solventogenesis. Two H-type cells were operated in fed-batch mode at -0.8 V vs. SHE with CO2 as the sole carbon source. A mixed culture, enriched with Clostridium ljungdahlii was used as the biocatalyst. The combination of low pH (<4.5) and pCO2 (<0.3 atm), along with high HA concentration (about 6 g L-1) and pH2 (>3 atm), were mandatory conditions for maintaining an efficient solventogenic culture, dominated by Clostridium sp., capable of high-rate EtOH production. The maximum EtOH production rate was 10.95 g m-2 d-1, and a concentration of 5.28 g L-1 was achieved. Up to 30 % of the electrons and 15.2 % of the carbon provided were directed towards EtOH production, and 28.1 kWh were required for the synthesis of 1 kg of EtOH from CO2. These results highlight that strict conditions are required for a continuous, reliable, EtOH production in MES cells. Future investigation should focus on improving cell configuration to achieve EtOH production at higher current densities while minimizing the electric energy input.


Assuntos
Dióxido de Carbono , Etanol , Biocombustíveis , Eletricidade , Ácido Acético , Eletrodos
2.
Sci Total Environ ; 714: 136838, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32018979

RESUMO

Microbiota inhabiting the intermittent streambeds mediates several in-stream processes that are essential for ecosystem function. Reduced stream discharge caused by the strengthened intermittency and increased duration of the dry phase is a spreading global response to changes in climate. Here, the impacts of a 5-month desiccation, one-week rewetting and punctual storms, which interrupted the dry period, were examined. The genomic composition of total (DNA) and active (RNA) diversity, and the community level physiological profiles (CLPP) were considered as proxies for functional diversity to describe both prokaryotes and eukaryotes inhabiting the surface and hyporheic streambeds. Comparisons between the genomic and potential functional responses helped to understand how and whether the microbial diversity was sensitive to the environmental conditions and resource acquisition, such as water stress and extracellular enzyme activities, respectively. RNA expression showed the strongest relationship with the environmental conditions and resource acquisition, being more responsive to changing conditions compared to DNA diversity, especially in the case of prokaryotes. The DNA results presumably reflected the legacy of the treatments because inactive, dormant, or dead cells were included, suggesting a slow microbial biomass turnover or responses of the microbial communities to changes mainly through physiological acclimation. On the other hand, microbial functional diversity was largely explained by resources acquisition, such as metrics of extracellular enzymes, and appeared vulnerable to the hydrological changes and duration of desiccation. The data highlight the need to improve the functional assessment of stream ecosystems with the application of complementary metrics to better describe the streambed microbial dynamics under dry-rewet stress.


Assuntos
Microbiota , Biomassa , Hidrologia , Rios
3.
Environ Microbiol Rep ; 1(1): 86-93, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23765724

RESUMO

Agar-based solid media with increasing concentrations of organic matter were used to isolate new members of the Chloroflexaceae (phylum Chloroflexi) from mesophilic environments containing sulfide. Inorganic media yielded less than 10% positive enrichments, which were not able to be maintained after repetitive inoculations in fresh medium. The use of casaminoacids and complex organic acid mixtures increased the number of positive enrichments (up to 45%) from both water and sediment samples. Two different green filamentous bacteria, SisoF2 and SalF, could be stably maintained as co-cultures for long periods and their phylogeny inferred from the analysis of complete sequences of the 16S rRNA gene. Ribotype SalF showed a high homology (95-98%) to previously isolated Oscillochloris trichoides strains. The 16S rRNA gene sequence retrieved from culture SisoF2 was largely divergent (< 92% similarity) from any sequence derived from either cultured representatives or environmental samples, suggesting that ribotype SisoF2 may constitute a new genus within the phylum. The presence of the new morphotypes in the environment from where they were enriched was analysed by high-resolution phylogenetic fingerprinting.

4.
Appl Environ Microbiol ; 66(2): 499-508, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10653710

RESUMO

The microbial assemblages of Lake Cisó and Lake Vilar (Banyoles, northeast Spain) were analyzed in space and time by microscopy and by performing PCR-denaturing gradient gel electrophoresis (DGGE) and sequence analysis of 16S rRNA gene fragments. Samples obtained from different water depths and at two different times of the year (in the winter during holomixis and in the early spring during a phytoplankton bloom) were analyzed. Although the lakes have the same climatic conditions and the same water source, the limnological parameters were different, as were most of the morphologically distinguishable photosynthetic bacteria enumerated by microscopy. The phylogenetic affiliations of the predominant DGGE bands were inferred by performing a comparative 16S rRNA sequence analysis. Sequences obtained from Lake Cisó samples were related to gram-positive bacteria and to members of the division Proteobacteria. Sequences obtained from Lake Vilar samples were related to members of the Cytophaga-Flavobacterium-Bacteroides phylum and to cyanobacteria. Thus, we found that like the previously reported differences between morphologically distinct inhabitants of the two lakes, there were also differences among the community members whose morphologies did not differ conspicuously. The changes in the species composition from winter to spring were also marked. The two lakes both contained sequences belonging to phototrophic green sulfur bacteria, which is consistent with microscopic observations, but these sequences were different from the sequences of cultured strains previously isolated from the lakes. Euryarchaeal sequences (i.e., methanogen- and thermoplasma-related sequences) also were present in both lakes. These euryarchaeal group sequences dominated the archaeal sequences in Lake Cisó but not in Lake Vilar. In Lake Vilar, a new planktonic population related to the crenarchaeota produced the dominant archaeal band. The phylogenetic analysis indicated that new bacterial and archaeal lineages were present and that the microbial diversity of these assemblages was greater than previously known. We evaluated the correspondence between the abundances of several morphotypes and DGGE bands by comparing microscopy and sequencing results. Our data provide evidence that the sequences obtained from the DGGE fingerprints correspond to the microorganisms that are actually present at higher concentrations in the natural system.


Assuntos
Archaea/classificação , Bactérias/classificação , Ecossistema , Água Doce/microbiologia , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA Ribossômico/análise , DNA Ribossômico/genética , Eletroforese/métodos , Microscopia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfetos/análise , Microbiologia da Água
5.
Biochim Biophys Acta ; 1457(1-2): 71-80, 2000 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-10692551

RESUMO

We have studied energy transfer in chlorosomes of Chlorobium limicola UdG6040 containing a mixture of about 50% bacteriochlorophyll (BChl) c and BChl d each. BChl d-depleted chlorosomes were obtained by acid treatment. The energy transfer between the different pigment pools was studied using both steady-state and time-resolved fluorescence spectroscopy at room temperature and low temperature. The steady-state emission of the intact chlorosome originated mainly from BChl c, as judged by comparison of fluorescence emission spectra of intact and BChl d-depleted chlorosomes. This indicated that efficient energy transfer from BChl d to BChl c takes place. At room temperature BChl c/d to BChl a excitation energy transfer (EET) was characterized by two components of 27 and 74 ps. At low temperature we could also observe EET from BChl d to BChl c with a time constant of approximately 4 ps. Kinetic modeling of the low temperature data indicated heterogeneous fluorescence kinetics and suggested the presence of an additional BChl c pool, E790, which is more or less decoupled from the baseplate BChl a. This E790 pool is either a low-lying exciton state of BChl c which acts as a trap at low temperature or alternatively represents the red edge of a broad inhomogeneous absorption band of BChl c. We present a refined model for the organization of the spatially separated pigment pools in chlorosomes of Cb. limicola UdG6040 in which BChl d is situated distal and BChl c proximal with respect to the baseplate.


Assuntos
Proteínas de Bactérias/química , Bacterioclorofilas , Chlorobi/genética , Chlorobi/química , Dicroísmo Circular , Transferência de Energia , Complexo de Proteínas do Centro de Reação Fotossintética/química
6.
Arch Microbiol ; 170(4): 252-8, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9732439

RESUMO

The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h-1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 &mgr;M. This concentration was reduced to 5. 1 &mgr;M when lower dilution rates were used. The saturation constant for growth on phosphate (K&mgr;) was between 2.8 and 3.7 &mgr;M. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation model and yielded a maximum rate (Vamax) of 66 nmol P (mg protein)-1 h-1 and a saturation constant for transport (Kt) of 1.6 &mgr;M. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)-1 h-1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the cells ranged from 0.4 to 1.1 &mgr;mol P (mg protein)-1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage that enables Chl. limicola to thrive in changing environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...