Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 10: 102215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251652

RESUMO

Due to the widespread use of non-steroidal anti-inflammatory drugs (NSAIDs) without a medical prescription and their frequent prevalence in aquatic habitats, there are major health and environmental issues. NSAIDs have been found in surface water and wastewater in concentrations ranging from ng/L to µg/L all over the world. The purpose of this study was to determine the relationship between NSAIDs (diclofenac, ketoprofen, paracetamol and ibuprofen) exposure and associated adverse effects in the assessment of indirect human health risks posed by Danio rerio (zebrafish) and Environmental Risk Assessment (ERA) of these NSAIDs in aquatic environments. Therefore, the objectives of this study were to (i) reveal abnormality endpoints of early developmental stages, after exposure of zebrafish and (ii) perform an ecological risk assessment of aquatic organisms upon exposure to NSAIDs detected in surface waters based on the risk quotients (RQs) method. According to the toxicity data collected, all of the malformations appeared after diclofenac exposure at all concentrations. The most notable malformations were the lack of pigmentation and an increase in yolk sac volume, with EC50 values of 0.6 and 1.03 mg/L, respectively. The results obtained for the ERA revealed RQs higher than 1 for all the four NSAIDs chosen, posing ecotoxicological pressure in aquatic environments. Overall, our findings provide a critical contribution to the formulation of high-priority actions, sustainable strategies and strict regulations that minimize the negative effects of NSAIDs on the aquatic ecosystem.•To determine the LC50, lethal conditions such as coagulation, absence of heartbeat and blood flow, absence of tail separation and development of somites were taken into account.•The EC50 was calculated using sublethal parameters such as blood coagulation, pericardial edema, yolk sac edema or hypertrophy.•The 4 compounds present a high risk individually and in mixture with a RQ >> 1.

2.
Molecules ; 27(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35565980

RESUMO

Nowadays, increasing interest has recently been given to the exploration of new food preservatives to avoid foodborne outbreaks or food spoilage. Likewise, new compounds that substitute the commonly used synthetic food preservatives are required to restrain the rising problem of microbial resistance. Accordingly, the present study was conducted to examine the chemical composition and the mechanism(s) of action of the Cupressus sempervirens essential oil (CSEO) against Salmonella enterica Typhimuriumand Staphyloccocus aureus. The gas chromatography analysis revealed α-pinene (38.47%) and δ-3-carene (25.14%) are the major components of the CSEO. By using computational methods, such as quantitative structure-activity relationship (QSAR), we revealed that many CSEO components had no toxic effects. Moreover, findings indicated that α-pinene, δ-3-carene and borneol, a minor compound of CSEO, could inhibit the AcrB-TolC and MepR efflux pump activity of S. enterica Typhimurium and S. aureus, respectively. In addition, our molecular docking predictions indicated the high affinity of these three compounds with active sites of bacterial DNA and RNA polymerases, pointing to plausible impairments of the pathogenic bacteria cell replication processes. As well, the safety profile was developed through the zebrafish model. The in vivo toxicological evaluation of (CSEO) exhibited a concentration-dependent manner, with a lethal concentration (LC50) equal to 6.6 µg/mL.


Assuntos
Cupressus , Óleos Voláteis , Animais , Antibacterianos/farmacologia , Cupressus/química , Conservantes de Alimentos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Staphylococcus aureus , Peixe-Zebra
3.
PLoS Genet ; 18(3): e1010083, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35294439

RESUMO

Gene duplications and transcriptional enhancer emergence/modifications are thought having greatly contributed to phenotypic innovations during animal evolution. Nevertheless, little is known about how enhancers evolve after gene duplication and how regulatory information is rewired between duplicated genes. The Drosophila melanogaster bric-a-brac (bab) complex, comprising the tandem paralogous genes bab1 and bab2, provides a paradigm to address these issues. We previously characterized an intergenic enhancer (named LAE) regulating bab2 expression in the developing legs. We show here that bab2 regulators binding directly the LAE also govern bab1 expression in tarsal cells. LAE excision by CRISPR/Cas9-mediated genome editing reveals that this enhancer appears involved but not strictly required for bab1 and bab2 co-expression in leg tissues. Instead, the LAE enhancer is critical for paralog-specific bab2 expression along the proximo-distal leg axis. Chromatin features and phenotypic rescue experiments indicate that LAE functions partly redundantly with leg-specific regulatory information overlapping the bab1 transcription unit. Phylogenomics analyses indicate that (i) the bab complex originates from duplication of an ancestral singleton gene early on within the Cyclorrhapha dipteran sublineage, and (ii) LAE sequences have been evolutionarily-fixed early on within the Brachycera suborder thus predating the gene duplication event. This work provides new insights on enhancers, particularly about their emergence, maintenance and functional diversification during evolution.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Elementos Facilitadores Genéticos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Dev Genes Evol ; 230(1): 37, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31989242

RESUMO

In the originally published article, the first names and family names of the authors were interchanged, hence not correct. The correct presentation of names is presented above.

5.
Dev Genes Evol ; 230(1): 27-36, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31838648

RESUMO

Otospiralin (OTOSP) is a small protein of unknown function, expressed in fibrocytes of the inner ear and required for normal cochlear auditory function. Despite its conservation from fish to mammals, expression of otospiralin was only investigated in mammals. Here, we report for the first time the expression profile of OTOS orthologous genes in zebrafish (Danio rerio): otospiralin and si:ch73-23l24.1 (designated otospiralin-like). In situ hybridization analyses in zebrafish embryos showed a specific expression of otospiralin-like in notochord (from 14 to 48 hpf) and similar expression patterns for otospiralin and otospiralin-like in gut (from 72 to 120 hpf), swim bladder (from 96 to 120 hpf) and inner ear (at 120 hpf). Morpholino knockdown of otospiralin and otospiralin-like showed no strong change of the body structure of the embryos at 5 dpf and the inner ear was normally formed. Nevertheless, knockdown embryos showed a reduced number of kinocilia in the lateral crista, indicating that these genes play an important role in kinocilium formation. RT-qPCR revealed that otospiralin is highly expressed in adult zebrafish inner ear comparing to the others analyzed tissues as previously shown for mice. Interestingly, otospiralin-like was not detected in the inner ear which suggests that otospiralin have a more important function in hearing than otospiralin-like. Phylogenetic analysis of otospiralin proteins in vertebrates indicated the presence of two subgroups and supported the functional divergence observed in zebrafish for otospiralin and otospiralin-like genes. This study offers the first insight into the expression of otospiralin and otospiralin-like in zebrafish. Expression data point to an important role for otospiralin in zebrafish hearing and a specific role for otospiralin-like in notochord vacuolization.


Assuntos
Duplicação Gênica , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Orelha Interna/crescimento & desenvolvimento , Orelha Interna/metabolismo , Embrião não Mamífero/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Morfolinos , Filogenia , Transcriptoma , Vertebrados/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
6.
PLoS Genet ; 13(4): e1006718, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28394894

RESUMO

Drosophila leg morphogenesis occurs under the control of a relatively well-known genetic cascade, which mobilizes both cell signaling pathways and tissue-specific transcription factors. However, their cross-regulatory interactions, deployed to refine leg patterning, remain poorly characterized at the gene expression level. Within the genetically interacting landscape that governs limb development, the bric-à-brac2 (bab2) gene is required for distal leg segmentation. We have previously shown that the Distal-less (Dll) homeodomain and Rotund (Rn) zinc-finger activating transcription factors control limb-specific bab2 expression by binding directly a single critical leg/antennal enhancer (LAE) within the bric-à-brac locus. By genetic and molecular analyses, we show here that the EGFR-responsive C15 homeodomain and the Notch-regulated Bowl zinc-finger transcription factors also interact directly with the LAE enhancer as a repressive duo. The appendage patterning gene bab2 is the first identified direct target of the Bowl repressor, an Odd-skipped/Osr family member. Moreover, we show that C15 acts on LAE activity independently of its regular partner, the Aristaless homeoprotein. Instead, we find that C15 interacts physically with the Dll activator through contacts between their homeodomain and binds competitively with Dll to adjacent cognate sites on LAE, adding potential new layers of regulation by C15. Lastly, we show that C15 and Bowl activities regulate also rn expression. Our findings shed light on how the concerted action of two transcriptional repressors, in response to cell signaling inputs, shapes and refines gene expression along the limb proximo-distal axis in a timely manner.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endopeptidases/genética , Proteínas de Homeodomínio/genética , Morfogênese/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/biossíntese , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Endopeptidases/biossíntese , Elementos Facilitadores Genéticos , Receptores ErbB/genética , Extremidades/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Especificidade de Órgãos/genética , Ligação Proteica , Receptores de Peptídeos de Invertebrados/genética , Proteínas Repressoras/biossíntese , Transdução de Sinais , Fatores de Transcrição/biossíntese , Fatores de Transcrição/metabolismo
7.
Hum Mol Genet ; 24(9): 2482-91, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25601850

RESUMO

Hearing loss is the most common sensory deficit in humans. We show that a point mutation in DCDC2 (DCDC2a), a member of doublecortin domain-containing protein superfamily, causes non-syndromic recessive deafness DFNB66 in a Tunisian family. Using immunofluorescence on rat inner ear neuroepithelia, DCDC2a was found to localize to the kinocilia of sensory hair cells and the primary cilia of nonsensory supporting cells. DCDC2a fluorescence is distributed along the length of the kinocilium with increased density toward the tip. DCDC2a-GFP overexpression in non-polarized COS7 cells induces the formation of long microtubule-based cytosolic cables suggesting a role in microtubule formation and stabilization. Deafness mutant DCDC2a expression in hair cells and supporting cells causes cilium structural defects, such as cilium branching, and up to a 3-fold increase in length ratios. In zebrafish, the ortholog dcdc2b was found to be essential for hair cell development, survival and function. Our results reveal DCDC2a to be a deafness gene and a player in hair cell kinocilia and supporting cell primary cilia length regulation likely via its role in microtubule formation and stabilization.


Assuntos
Cílios/metabolismo , Genes Recessivos , Células Ciliadas Auditivas/metabolismo , Perda Auditiva Neurossensorial/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Animais , Linhagem Celular , Mapeamento Cromossômico , Análise Mutacional de DNA , Modelos Animais de Doenças , Proteína Duplacortina , Feminino , Expressão Gênica , Genes Reporter , Homozigoto , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Alinhamento de Sequência , Peixe-Zebra
8.
PLoS Genet ; 9(6): e1003581, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23825964

RESUMO

Most identified Drosophila appendage-patterning genes encode DNA-binding proteins, whose cross-regulatory interactions remain to be better characterized at the molecular level, notably by studying their direct binding to tissue-specific transcriptional enhancers. A fine-tuned spatio-temporal expression of bric-a-brac2 (bab2) along concentric rings is essential for proper proximo-distal (P-D) differentiation of legs and antennae. However, within the genetic interaction landscape governing limb development, no transcription factor directly controlling bab2 expression has been identified to date. Using site-targeted GFP reporter assay and BAC recombineering, we show here that restricted bab2 expression in leg and antennal imaginal discs relies on a single 567-bp-long cis-regulatory module (CRM), termed LAE (for leg and antennal enhancer). We show that this CRM (i) is necessary and sufficient to ensure normal bab2 activity in developing leg and antenna, and (ii) is structurally and functionally conserved among Drosophilidae. Through deletion and site-directed mutagenesis approaches, we identified within the LAE essential sequence motifs required in both leg and antennal tissues. Using genetic and biochemical tests, we establish that in the LAE (i) a key TAAT-rich activator motif interacts with the homeodomain P-D protein Distal-less (Dll) and (ii) a single T-rich activator motif binds the C2H2 zinc-finger P-D protein Rotund (Rn), leading to bab2 up-regulation respectively in all or specifically in the proximal-most ring(s), both in leg and antenna. Joint ectopic expression of Dll and Rn is sufficient to cell-autonomously activate endogenous bab2 and LAE-driven reporter expression in wing and haltere cells. Our findings indicate that accuracy, reliability and robustness of developmental gene expression do not necessarily require cis-regulatory information redundancy.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Homeodomínio/genética , Morfogênese/genética , Fatores de Transcrição/genética , Animais , Padronização Corporal , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Elementos Facilitadores Genéticos , Extremidades/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Mutagênese Sítio-Dirigida , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA