Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 10(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34439018

RESUMO

Streptomyces sp. has been known to be a major antibiotic producer since the 1940s. As the number of cases related to resistance pathogens infection increases yearly, discovering the biosynthesis pathways of antibiotic has become important. In this study, we present the streamline of a project report summary; the genome data and metabolome data of newly isolated Streptomyces SUK 48 strain are also analyzed. The antibacterial activity of its crude extract is also determined. To obtain genome data, the genomic DNA of SUK 48 was extracted using a commercial kit (Promega) and sent for sequencing (Pac Biosciences technology platform, Menlo Park, CA, USA). The raw data were assembled and polished using Hierarchical Genome Assembly Process 4.0 (HGAP 4.0). The assembled data were structurally predicted using tRNAscan-SE and rnammer. Then, the data were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) database and antiSMASH analysis. Meanwhile, the metabolite profile of SUK 48 was determined using liquid chromatography-mass spectrophotometry (LC-MS) for both negative and positive modes. The results showed that the presence of kanamycin and gentamicin, as well as the other 11 antibiotics. Nevertheless, the biosynthesis pathways of aurantioclavine were also found. The cytotoxicity activity showed IC50 value was at 0.35 ± 1.35 mg/mL on the cell viability of HEK 293. In conclusion, Streptomyces sp. SUK 48 has proven to be a non-toxic antibiotic producer such as auranticlavine and gentamicin.

2.
PeerJ ; 9: e10816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777509

RESUMO

BACKGROUND: Antiplasmodial drug discovery is significant especially from natural sources such as plant bacteria. This research aimed to determine antiplasmodial metabolites of Streptomyces spp. against Plasmodium falciparum 3D7 by using a metabolomics approach. METHODS: Streptomyces strains' growth curves, namely SUK 12 and SUK 48, were measured and P. falciparum 3D7 IC50 values were calculated. Metabolomics analysis was conducted on both strains' mid-exponential and stationary phase extracts. RESULTS: The most successful antiplasmodial activity of SUK 12 and SUK 48 extracts shown to be at the stationary phase with IC50 values of 0.8168 ng/mL and 0.1963 ng/mL, respectively. In contrast, the IC50 value of chloroquine diphosphate (CQ) for antiplasmodial activity was 0.2812 ng/mL. The univariate analysis revealed that 854 metabolites and 14, 44 and three metabolites showed significant differences in terms of strain, fermentation phase, and their interactions. Orthogonal partial least square-discriminant analysis and S-loading plot putatively identified pavettine, aurantioclavine, and 4-butyldiphenylmethane as significant outliers from the stationary phase of SUK 48. For potential isolation, metabolomics approach may be used as a preliminary approach to rapidly track and identify the presence of antimalarial metabolites before any isolation and purification can be done.

3.
J Trop Med ; 2017: 2189814, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123551

RESUMO

Natural products continue to play an important role as a source of biologically active substances for the development of new drug. Streptomyces, Gram-positive bacteria which are widely distributed in nature, are one of the most popular sources of natural antibiotics. Recently, by using a bioassay-guided fractionation, an antimalarial compound, Gancidin-W, has been discovered from these bacteria. However, this classical method in identifying potentially novel bioactive compounds from the natural products requires considerable effort and is a time-consuming process. Metabolomics is an emerging "omics" technology in systems biology study which integrated in process of discovering drug from natural products. Metabolomics approach in finding novel therapeutics agent for malaria offers dereplication step in screening phase to shorten the process. The highly sensitive instruments, such as Liquid Chromatography-Mass Spectrophotometry (LC-MS), Gas Chromatography-Mass Spectrophotometry (GC-MS), and Nuclear Magnetic Resonance (1H-NMR) spectroscopy, provide a wide range of information in the identification of potentially bioactive compounds. The current paper reviews concepts of metabolomics and its application in drug discovery of malaria treatment as well as assessing the antimalarial activity from natural products. Metabolomics approach in malaria drug discovery is still new and needs to be initiated, especially for drug research in Malaysia.

4.
Drug Des Devel Ther ; 11: 351-363, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28223778

RESUMO

Endophytic Streptomyces strains are potential sources for novel bioactive molecules. In this study, the diketopiperazine gancidin W (GW) was isolated from the endophytic actinobacterial genus Streptomyces, SUK10, obtained from the bark of Shorea ovalis tree, and it was tested in vivo against Plasmodium berghei PZZ1/100. GW exhibited an inhibition rate of nearly 80% at 6.25 and 3.125 µg kg-1 body weight on day four using the 4-day suppression test method on male ICR strain mice. Comparing GW at both concentrations with quinine hydrochloride and normal saline as positive and negative controls, respectively, 50% of the mice treated with 3.125 µg kg-1 body weight managed to survive for more than 11 months after infection, which almost reached the life span of normal mice. Biochemical tests of selected enzymes and proteins in blood samples of mice treated with GW were also within normal levels; in addition, no abnormalities or injuries were found on internal vital organs. These findings indicated that this isolated bioactive compound from Streptomyces SUK10 exhibits very low toxicity and is a good candidate for potential use as an antimalarial agent in an animal model.


Assuntos
Antimaláricos/farmacologia , Malária/tratamento farmacológico , Malária/parasitologia , Piperazinas/farmacologia , Plasmodium berghei/efeitos dos fármacos , Streptomyces/química , Animais , Antimaláricos/química , Antimaláricos/isolamento & purificação , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos ICR , Conformação Molecular , Testes de Sensibilidade Parasitária , Piperazinas/química , Piperazinas/isolamento & purificação
5.
J Microbiol ; 53(12): 847-55, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26626355

RESUMO

Endophytic bacteria, such as Streptomyces, have the potential to act as a source for novel bioactive molecules with medicinal properties. The present study was aimed at assessing the antimalarial activity of crude extract isolated from various strains of actinobacteria living endophytically in some Malaysian medicinal plants. Using the four day suppression test method on male ICR strain mice, compounds produced from three strains of Streptomyces (SUK8, SUK10, and SUK27) were tested in vivo against Plasmodium berghei PZZ1/100 in an antimalarial screen using crude extracts at four different concentrations. One of these extracts, isolated from Streptomyces SUK10 obtained from the bark of Shorea ovalis tree, showed inhibition of the test organism and was further tested against P. berghei-infected mice for antimalarial activity at different concentrations. There was a positive relationship between the survival of the infected mouse group treated with 50 µg/kg body weight (bw) of ethyl acetate-SUK10 crude extract and the ability to inhibit the parasites growth. The parasite inhibition percentage for this group showed that 50% of the mice survived for more than 90 days after infection with the parasite. The nucleotide sequence and phylogenetic tree suggested that Streptomyces SUK10 may constitute a new species within the Streptomyces genus. As part of the drug discovery process, these promising finding may contribute to the medicinal and pharmaceutical field for malarial treatment.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Endófitos/química , Plasmodium berghei/efeitos dos fármacos , Streptomyces/química , Animais , Antimaláricos/isolamento & purificação , Dipterocarpaceae/microbiologia , Malária/tratamento farmacológico , Malásia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Filogenia , Plantas Medicinais/microbiologia , Streptomyces/classificação , Streptomyces/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...