Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skelet Muscle ; 13(1): 19, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980539

RESUMO

BACKGROUND: The lack of functional dystrophin protein in Duchenne muscular dystrophy (DMD) causes chronic skeletal muscle inflammation and degeneration. Therefore, the restoration of functional dystrophin levels is a fundamental approach for DMD therapy. Electrical impedance myography (EIM) is an emerging tool that provides noninvasive monitoring of muscle conditions and has been suggested as a treatment response biomarker in diverse indications. Although magnetic resonance imaging (MRI) of skeletal muscles has become a standard measurement in clinical trials for DMD, EIM offers distinct advantages, such as portability, user-friendliness, and reduced cost, allowing for remote monitoring of disease progression or response to therapy. To investigate the potential of EIM as a biomarker for DMD, we compared longitudinal EIM data with MRI/histopathological data from an X-linked muscular dystrophy (mdx) mouse model of DMD. In addition, we investigated whether EIM could detect dystrophin-related changes in muscles using antisense-mediated exon skipping in mdx mice. METHODS: The MRI data for muscle T2, the magnetic resonance spectroscopy (MRS) data for fat fraction, and three EIM parameters with histopathology were longitudinally obtained from the hindlimb muscles of wild-type (WT) and mdx mice. In the EIM study, a cell-penetrating peptide (Pip9b2) conjugated antisense phosphorodiamidate morpholino oligomer (PPMO), designed to induce exon-skipping and restore functional dystrophin production, was administered intravenously to mdx mice. RESULTS: MRI imaging in mdx mice showed higher T2 intensity at 6 weeks of age in hindlimb muscles compared to WT mice, which decreased at ≥ 9 weeks of age. In contrast, EIM reactance began to decline at 12 weeks of age, with peak reduction at 18 weeks of age in mdx mice. This decline was associated with myofiber atrophy and connective tissue infiltration in the skeletal muscles. Repeated dosing of PPMO (10 mg/kg, 4 times every 2 weeks) in mdx mice led to an increase in muscular dystrophin protein and reversed the decrease in EIM reactance. CONCLUSIONS: These findings suggest that muscle T2 MRI is sensitive to the early inflammatory response associated with dystrophin deficiency, whereas EIM provides a valuable biomarker for the noninvasive monitoring of subsequent changes in skeletal muscle composition. Furthermore, EIM reactance has the potential to monitor dystrophin-deficient muscle abnormalities and their recovery in response to antisense-mediated exon skipping.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofina/genética , Distrofina/metabolismo , Camundongos Endogâmicos mdx , Impedância Elétrica , Camundongos Endogâmicos C57BL , Distrofia Muscular de Duchenne/diagnóstico por imagem , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/metabolismo , Morfolinos/farmacologia , Morfolinos/uso terapêutico , Miografia , Biomarcadores
2.
Neuromuscul Disord ; 33(4): 302-308, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871413

RESUMO

Duchenne muscular dystrophy (DMD) is the most severe form of muscular dystrophy that is caused by lack of dystrophin, a critical structural protein in skeletal muscle. DMD treatments, and quantitative biomarkers to assess the efficacy of potential treatments, are urgently needed. Previous evidence has shown that titin, a muscle cell protein, is increased in the urine of patients with DMD, suggesting its usefulness as a DMD biomarker. Here, we demonstrated that the elevated titin in urine is directly associated with the lack of dystrophin and urine titin responses to drug treatment. We performed a drug intervention study using mdx mice, a DMD mouse model. We showed that mdx mice, which lack dystrophin due to a mutation in exon 23 of the Dmd gene, have elevated urine titin. Treatment with an exon skipper that targets exon 23 rescued muscle dystrophin level and dramatically decreased urine titin in mdx mice and correlates with dystrophin expression. We also demonstrated that titin levels were significantly increased in the urine of patients with DMD. This suggests that elevated urine titin level might be a hallmark of DMD and a useful pharmacodynamic marker for therapies designed to restore dystrophin levels.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Camundongos Endogâmicos mdx , Conectina/urina , Músculo Esquelético/metabolismo , Biomarcadores/metabolismo , Modelos Animais de Doenças , Proteínas Quinases/metabolismo
3.
Eur J Med Chem ; 239: 114522, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35749987

RESUMO

Lysine-specific demethylase 1 (LSD1) is an enzyme that demethylates methylated histone H3 lysine 4 (H3K4). Inhibition of LSD1 enzyme activity could increase H3K4 methylation levels and treat diseases associated with epigenetic dysregulation. However, known LSD1 inhibitors disrupt the interaction between LSD1 and cofactors such as GFI1B, causing the risk of hematological toxicity, including thrombocytopenia. Starting from a known LSD1 inhibitor (±)1 as a lead compound, a novel series of LSD1 inhibitors that do not induce the expression of GFI1 mRNA, an in vitro surrogate marker of LSD1-GFI1B dissociation, has been designed and synthesized. Initial structure-activity relationship (SAR) studies revealed the structural features key to avoiding GFI1 mRNA induction. Such SAR information enables optimization of LSD1 inhibitors with lowered risk of hematological side effects; TAK-418 ((1R,2R)-2n), the clinical candidate compound found through this optimization, has a hematological safety profile in rodents and humans. We further confirmed that oral administration of TAK-418 at 0.3 and 1 mg/kg for 2 weeks ameliorated memory deficits in mice with NMDA receptor hypofunction, suggesting potential of efficacy in neurodevelopmental disorders. TAK-418 warrants further investigation as a novel class of LSD1 inhibitors with a superior safety profile for the treatment of CNS disorders.


Assuntos
Histona Desmetilases , Lisina , Animais , Inibidores Enzimáticos/química , Lisina/metabolismo , Camundongos , RNA Mensageiro , Relação Estrutura-Atividade
4.
ACS Chem Neurosci ; 13(3): 313-321, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35061371

RESUMO

Inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity is a promising approach to treat diseases associated with epigenetic dysregulation, such as neurodevelopmental disorders. However, this concept has not been fully validated because genetic LSD1 deletion causes embryonic lethality and conventional LSD1 inhibitors cause thrombocytopenia via the dissociation of LSD1-cofactor complex. To characterize the therapeutic potential of LSD1 enzyme inhibition, we used TAK-418 and T-448, the LSD1 enzyme activity-specific inhibitors with minimal impact on the LSD1-cofactor complex. TAK-418 and T-448, by inhibiting brain LSD1 enzyme activity, consistently improved social deficits in animal models of neurodevelopmental disorders without causing thrombocytopenia. Moreover, TAK-418 improved memory deficits caused by aging or amyloid precursor protein overexpression. In contrast, TAK-418 did not improve memory deficits caused by miR-137 overexpression. Thus, miR-137 modulation may be involved in memory improvement by LSD1 inhibition. TAK-418 warrants further investigation as a novel therapeutic agent for diseases with epigenetic dysregulation.


Assuntos
Inibidores Enzimáticos , Histona Desmetilases , Transtornos da Memória , MicroRNAs/genética , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/metabolismo , Transtornos da Memória/tratamento farmacológico , Roedores
5.
Mol Ther Methods Clin Dev ; 20: 779-791, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33738331

RESUMO

Kabuki syndrome (KS) is a rare cause of intellectual disability primarily caused by loss-of-function mutations in lysine-specific methyltransferase 2D (KMT2D), which normally adds methyl marks to lysine 4 on histone 3. Previous studies have shown that a mouse model of KS (Kmt2d +/ßGeo ) demonstrates disruption of adult neurogenesis and hippocampal memory. Proof-of-principle studies have shown postnatal rescue of neurological dysfunction following treatments that promote chromatin opening; however, these strategies are non-specific and do not directly address the primary defect of histone methylation. Since lysine-specific demethylase 1A (LSD1/KDM1A) normally removes the H3K4 methyl marks added by KMT2D, we hypothesized that inhibition of KDM1A demethylase activity may ameliorate molecular and phenotypic defects stemming from KMT2D loss. To test this hypothesis, we evaluated a recently developed KDM1A inhibitor (TAK-418) in Kmt2d +/ßGeo mice. We found that orally administered TAK-418 increases the numbers of newly born doublecortin (DCX)+ cells and processes in the hippocampus in a dose-dependent manner. We also observed TAK-418-dependent rescue of histone modification defects in hippocampus both by western blot and chromatin immunoprecipitation sequencing (ChIP-seq). Treatment rescues gene expression abnormalities including those of immediate early genes such as FBJ osteosarcoma oncogene (Fos) and FBJ osteosarcoma oncogene homolog B (Fosb). After 2 weeks of TAK-418, Kmt2d +/ßGeo mice demonstrated normalization of hippocampal memory defects. In summary, our data suggest that KDM1A inhibition is a plausible treatment strategy for KS and support the hypothesis that the epigenetic dysregulation secondary to KMT2D dysfunction plays a major role in the postnatal neurological disease phenotype in KS.

6.
J Med Chem ; 64(7): 3780-3793, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33729758

RESUMO

Dysregulation of histone H3 lysine 4 (H3K4) methylation is implicated in the pathogenesis of neurodevelopmental disorders. Lysine-specific demethylase 1 (LSD1) determines the methylation status of H3K4 through flavin adenine dinucleotide (FAD)-mediated histone demethylation. Therefore, LSD1 inhibition in the brain can be a novel therapeutic option for treating these disorders. Positron emission tomography (PET) imaging of LSD1 allows for investigating LSD1 expression levels under normal and disease conditions and validating target engagement of therapeutic LSD1 inhibitors. This study designed and synthesized (2-aminocyclopropyl)phenyl derivatives with irreversible binding to LSD1 as PET imaging agents for LSD1 in the brain. We optimized lipophilicity of the lead compound to minimize the risk of nonspecific binding and identified 1e with high selectivity over monoamine oxidase A and B, which are a family of FAD-dependent enzymes homologous to LSD1. PET imaging in a monkey showed a high uptake of [18F]1e to regions enriched with LSD1, indicating its specific binding to LSD1.


Assuntos
Encéfalo/metabolismo , Meios de Contraste/metabolismo , Ciclopropanos/metabolismo , Histona Desmetilases/metabolismo , Animais , Linhagem Celular , Meios de Contraste/síntese química , Ciclopropanos/síntese química , Desenho de Fármacos , Humanos , Macaca mulatta , Masculino , Tomografia por Emissão de Pósitrons , Ligação Proteica , Ratos , Suínos
7.
Sci Adv ; 7(11)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33712455

RESUMO

Persistent epigenetic dysregulation may underlie the pathophysiology of neurodevelopmental disorders, such as autism spectrum disorder (ASD). Here, we show that the inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity normalizes aberrant epigenetic control of gene expression in neurodevelopmental disorders. Maternal exposure to valproate or poly I:C caused sustained dysregulation of gene expression in the brain and ASD-like social and cognitive deficits after birth in rodents. Unexpectedly, a specific inhibitor of LSD1 enzyme activity, 5-((1R,2R)-2-((cyclopropylmethyl)amino)cyclopropyl)-N-(tetrahydro-2H-pyran-4-yl)thiophene-3-carboxamide hydrochloride (TAK-418), almost completely normalized the dysregulated gene expression in the brain and ameliorated some ASD-like behaviors in these models. The genes modulated by TAK-418 were almost completely different across the models and their ages. These results suggest that LSD1 enzyme activity may stabilize the aberrant epigenetic machinery in neurodevelopmental disorders, and the inhibition of LSD1 enzyme activity may be the master key to recover gene expression homeostasis. TAK-418 may benefit patients with neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Feminino , Histona Desmetilases/metabolismo , Humanos
8.
Neuropsychopharmacology ; 44(8): 1505-1512, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30580376

RESUMO

Dysregulation of histone H3 lysine 4 (H3K4) methylation has been implicated in the pathogenesis of several neurodevelopmental disorders. Targeting lysine-specific demethylase 1 (LSD1), an H3K4 demethylase, is therefore a promising approach to treat these disorders. However, LSD1 forms complexes with cofactors including growth factor independent 1B (GFI1B), a critical regulator of hematopoietic differentiation. Known tranylcypromine-based irreversible LSD1 inhibitors bind to coenzyme flavin adenine dinucleotide (FAD) and disrupt the LSD1-GFI1B complex, which is associated with hematotoxicity such as thrombocytopenia, representing a major hurdle in the development of LSD1 inhibitors as therapeutic agents. To discover LSD1 inhibitors with potent epigenetic modulation and lower risk of hematotoxicity, we screened small molecules that enhance H3K4 methylation by the inhibition of LSD1 enzyme activity in primary cultured rat neurons but have little impact on LSD1-GFI1B complex in human TF-1a erythroblasts. Here we report the discovery of a specific inhibitor of LSD1 enzyme activity, T-448 (3-((1S,2R)-2-(cyclobutylamino)cyclopropyl)-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzamide fumarate). T-448 has minimal impact on the LSD1-GFI1B complex and a superior hematological safety profile in mice via the generation of a compact formyl-FAD adduct. T-448 increased brain H3K4 methylation and partially restored learning function in mice with NMDA receptor hypofunction. T-448-type LSD1 inhibitors with improved safety profiles may provide unique therapeutic approaches for central nervous system disorders associated with epigenetic dysregulation.


Assuntos
Benzamidas/farmacologia , Histona Desmetilases/antagonistas & inibidores , Aprendizagem em Labirinto/efeitos dos fármacos , Trombocitopenia/induzido quimicamente , Animais , Benzamidas/efeitos adversos , Encéfalo/metabolismo , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/metabolismo , Histonas/metabolismo , Humanos , Masculino , Metilação/efeitos dos fármacos , Camundongos , Neurônios/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Proteínas Repressoras/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-30142552

RESUMO

A three-stage chromatography protocol for the purification of human papillomavirus-like particles (HPV-LPs) from the silkworm-based Bombyx mori nucleopolyhedrovirus bacmid expression system was developed. For host cell DNA separation, anion exchange chromatography was used after screening for a suitable stationary phase. Using the two separation principles of cation exchange chromatography and metal affinity of ceramic hydroxyapatite (CHT) as a second stage, the amount of baculovirus in the sample was reduced to less than the detection limit of qPCR. The CHT separation was optimized with respect to the elution buffer used; 150-600 mM sodium phosphate, pH 7.2, resulted in the highest recovery of HPV-LPs. Using heparin chromatography, it was possible to reduce the sample volume and to thus highly concentrate the target protein during the separation of contaminating proteins. During the second purification stage, over 99.3% of the DNA was removed, and no infectious baculoviruses remained. After concentration by heparin column chromatography, over 99.9% of the DNA and protein had been removed. The purity achieved by this method exceeds that obtained by DDDDK-tag-based affinity chromatography and sucrose gradient ultracentrifugation, which were used as comparative purification methods. The 3-stage purification of HPV-LPs from silkworm fat bodies described here was a proof of concept and is a scalable method, but the overall yield remains to be improved.


Assuntos
Bombyx/genética , Nucleopoliedrovírus/metabolismo , Papillomaviridae/isolamento & purificação , Vírion/isolamento & purificação , Cultura de Vírus/métodos , Animais , Bombyx/metabolismo , Cromatografia por Troca Iônica , Nucleopoliedrovírus/genética , Papillomaviridae/química , Vírion/química
10.
Mol Neurobiol ; 54(6): 4243-4256, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27339876

RESUMO

Neurodegeneration in the adult mammalian central nervous system (CNS) is fundamentally accelerated by its intrinsic neuronal mechanisms, including its poor regenerative capacity and potent extrinsic inhibitory factors. Thus, the treatment of neurodegenerative diseases faces many obstacles. The degenerative processes, consisting of axonal/dendritic structural disruption, abnormal axonal transport, release of extracellular factors, and inflammation, are often controlled by the cytoskeleton. From this perspective, regulators of the cytoskeleton could potentially be a therapeutic target for neurodegenerative diseases and CNS injury. Collapsin response mediator proteins (CRMPs) are known to regulate the assembly of cytoskeletal proteins in neurons, as well as control axonal growth and neural circuit formation. Recent studies have provided some novel insights into the roles of CRMPs in several inhibitory signaling pathways of neurodegeneration, in addition to its functions in neurological disorders and CNS repair. Here, we summarize the roles of CRMPs in axon regeneration and its emerging functions in non-neuronal cells, especially in inflammatory responses. We also discuss the direct and indirect targeting of CRMPs as a novel therapeutic strategy for neurological diseases.


Assuntos
Sistema Nervoso Central/lesões , Doenças Neurodegenerativas/terapia , Neuroglia/metabolismo , Neurônios/metabolismo , Semaforina-3A/metabolismo , Animais , Sistema Nervoso Central/patologia , Humanos , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Doenças Neurodegenerativas/patologia , Neuroglia/patologia , Neurônios/patologia
11.
Nanoscale Res Lett ; 11(1): 65, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26847691

RESUMO

The demand for biologically compatible and stable noble metal nanoparticles (NPs) has increased in recent years due to their inert nature and unique optical properties. In this article, we present 11 different synthetic methods for obtaining gold nanoparticles (Au NPs) through the use of common biological buffers. The results demonstrate that the sizes, shapes, and monodispersity of the NPs could be varied depending on the type of buffer used, as these buffers acted as both a reducing agent and a stabilizer in each synthesis. Theoretical simulations and electrochemical experiments were performed to understand the buffer-dependent variations of size and morphology exhibited by these Au NPs, which revealed that surface interactions and the electrostatic energy on the (111) surface of Au were the determining factors. The long-term stability of the synthesized NPs in buffer solution was also investigated. Most NPs synthesized using buffers showed a uniquely wide range of pH stability and excellent cell viability without the need for further modifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...