Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928218

RESUMO

Pollen from common ragweed is an important allergen source worldwide and especially in western and southern Romania. More than 100 million patients suffer from symptoms of respiratory allergy (e.g., rhinitis, asthma) to ragweed pollen. Among the eleven characterized allergens, Amb a 6 is a non-specific lipid transfer protein (nsLTP). nsLTPs are structurally stable proteins in pollen and food from different unrelated plants capable of inducing severe reactions. The goal of this study was to produce Amb a 6 as a recombinant and structurally folded protein (rAmb a 6) and to characterize its physicochemical and immunological features. rAmb a 6 was expressed in Spodoptera frugiperda Sf9 cells as a secreted protein and characterized by mass spectrometry and circular dichroism (CD) spectroscopy regarding molecular mass and fold, respectively. The IgE-binding frequency towards the purified protein was evaluated using sera from 150 clinically well-characterized ragweed-allergic patients. The allergenic activities of rAmb a 6 and the nsLTP from the weed Parietaria judaica (Par j 2) were evaluated in basophil activation assays. rAmb a 6-specific IgE reactivity was associated with clinical features. Pure rAmb a 6 was obtained by insect cell expression. Its deduced molecular weight corresponded to that determined by mass spectrometry (i.e., 10,963 Da). rAmb a 6 formed oligomers as determined by SDS-PAGE under non-reducing conditions. According to multiple sequence comparisons, Amb a 6 was a distinct nsLTP with less than 40% sequence identity to currently known plant nsLTP allergens, except for nsLTP from Helianthus (i.e., 52%). rAmb a 6 is an important ragweed allergen recognized by 30% of ragweed pollen allergic patients. For certain patients, rAmb a 6-specific IgE levels were higher than those specific for the major ragweed allergen Amb a 1 and analysis also showed a higher allergenic activity in the basophil activation test. rAmb a 6-positive patients suffered mainly from respiratory symptoms. The assumption that Amb a 6 is a source-specific ragweed allergen is supported by the finding that none of the patients showing rAmb a 6-induced basophil activation reacted with Par j 2 and only one rAmb a 6-sensitized patient had a history of plant food allergy. Immunization of rabbits with rAmb a 6 induced IgG antibodies which strongly inhibited IgE binding to rAmb a 6. Our results demonstrate that Amb a 6 is an important source-specific ragweed pollen allergen that should be considered for diagnosis and allergen-specific immunotherapy of ragweed pollen allergy.


Assuntos
Alérgenos , Antígenos de Plantas , Proteínas de Transporte , Imunoglobulina E , Humanos , Alérgenos/imunologia , Imunoglobulina E/imunologia , Antígenos de Plantas/imunologia , Antígenos de Plantas/química , Animais , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Proteínas de Plantas/imunologia , Proteínas de Plantas/química , Feminino , Rinite Alérgica Sazonal/imunologia , Masculino , Adulto , Ambrosia/imunologia , Spodoptera/imunologia , Proteínas Recombinantes/imunologia , Sequência de Aminoácidos , Células Sf9 , Pessoa de Meia-Idade , Extratos Vegetais
2.
Vaccines (Basel) ; 12(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38932364

RESUMO

Currently, allergen-specific immunotherapy (AIT) for ragweed allergy is still based on natural allergen extracts. This study aimed to analyse the ability of four commercially available AIT vaccines (CLUSTOID, TYRO-SIT, POLLINEX Quattro Plus and Diater Depot) regarding their ability to induce IgG antibodies against ragweed pollen allergens in rabbits. Accordingly, the IgG reactivity of AIT-induced rabbit sera was tested for ten different ragweed pollen allergens (Amb a 1, 3, 4, 5, 6, 8, 9, 10, 11 and 12) by an ELISA. Furthermore, the ability of rabbit AIT-specific sera to block allergic patients' IgE binding to relevant ragweed allergens (Amb a 1, 4, 6, 8 and 11) and to inhibit allergen-induced basophil activation was evaluated by an IgE inhibition ELISA and a mediator release assay. Only two AIT vaccines (Diater Depot > CLUSTOID) induced relevant IgG antibody levels to the major ragweed allergen Amb a 1. The IgG responses induced by the AIT vaccines against the other ragweed allergens were low and highly heterogeneous. Interestingly, the kinetics of IgG responses were different among the AIT vaccines and even within one AIT vaccine (Diater Depot) for Amb a 1 (long-lasting) versus Amb a 8 and Amb a 11 (short-lived). This could be due to variations in allergen contents, the immunogenicity of the allergens, and different immunization protocols. The IgE inhibition experiments showed that rabbit AIT-specific sera containing high allergen-specific IgG levels were able to inhibit patients' IgE binding and prevent the mediator release with Diater Depot. The high levels of allergen-specific IgG levels were associated with their ability to prevent the recognition of allergens by patients' IgE and allergen-induced basophil activation, indicating that the measurement of allergen-induced IgG could be a useful surrogate marker for the immunological efficacy of vaccines. Accordingly, the results of our study may be helpful for the selection of personalized AIT vaccination strategies for ragweed-allergic patients.

3.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791214

RESUMO

Common ragweed pollen allergy has become a health burden worldwide. One of the major allergens in ragweed allergy is Amb a 1, which is responsible for over 90% of the IgE response in ragweed-allergic patients. The major allergen isoform Amb a 1.01 is the most allergenic isoform in ragweed pollen. So far, no recombinant Amb a 1.01 with similar allergenic properties to its natural counterpart (nAmb a 1.01) has been produced. Hence, this study aimed to produce a recombinant Amb a 1.01 with similar properties to the natural isoform for improved ragweed allergy management. Amb a 1.01 was expressed in insect cells using a codon-optimized DNA construct with a removable N-terminal His-Tag (rAmb a 1.01). The recombinant protein was purified by affinity chromatography and physicochemically characterized. The rAmb a 1.01 was compared to nAmb a 1.01 in terms of the IgE binding (enzyme-linked immunosorbent assay (ELISA), immunoblot) and allergenic activity (mediator release assay) in well-characterized ragweed-allergic patients. The rAmb a 1.01 exhibited similar IgE reactivity to nAmb a 1.01 in different IgE-binding assays (i.e., IgE immunoblot, ELISA, quantitative ImmunoCAP inhibition measurements). Furthermore, the rAmb a 1.01 showed comparable dose-dependent allergenic activity to nAmb a 1.01 regarding basophil activation. Overall, the results showed the successful expression of an rAmb a 1.01 with comparable characteristics to the corresponding natural isoform. Our findings provide the basis for an improvement in ragweed allergy research, diagnosis, and immunotherapy.


Assuntos
Alérgenos , Ambrosia , Antígenos de Plantas , Imunoglobulina E , Proteínas Recombinantes , Humanos , Antígenos de Plantas/imunologia , Antígenos de Plantas/genética , Antígenos de Plantas/química , Imunoglobulina E/imunologia , Animais , Alérgenos/imunologia , Alérgenos/genética , Ambrosia/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Feminino , Adulto , Proteínas de Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/química , Rinite Alérgica Sazonal/imunologia , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/química
4.
Mol Immunol ; 157: 18-29, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966550

RESUMO

BACKGROUND: Ragweed is an invasive plant in Europe, causing hay fever and asthma in allergic patients. Climate change is predicted to increase expansion and allergenicity. Elevated NO2 induced upregulation of a new allergen in ragweed pollen, an enolase, Amb a 12. OBJECTIVE: of this study was producing ragweed enolase as a recombinant protein and characterizing its physicochemical and immunological features. METHODS: Amb a 12 was designed for E. coli and insect cell expression. Physicochemical features were determined by mass spectrometry, circular dichroism measurements and enzymatic activity assay. Immunological characteristics were determined in ELISA, in a mediator release assay and by investigation of association with clinical symptoms. Common allergen sources were screened for similar proteins. RESULTS: Ragweed enolase was produced as a 48 kDa protein forming oligomers in both expression systems, showing differences in secondary structure content and enzymatic activity depending on expression system. IgE frequency and allergenicity were low regardless of expression system. Enolase-specific serum bound to similar sized molecules in mugwort, timothy grass and birch pollen, as well as food allergen sources, while highest IgE inhibition was achieved with peach pulp extract. CONCLUSIONS: Amb a 12 had high sequence similarity and comparable IgE frequency to enolase allergens from different sources. 50 kDa proteins were found in other pollen and food allergen sources, suggesting that enolases might be pan-allergens in pollen and plant foods.


Assuntos
Ambrosia , Proteínas de Plantas , Humanos , Escherichia coli , Imunoglobulina E , Alérgenos , Antígenos de Plantas , Pólen , Fosfopiruvato Hidratase/análise
5.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835455

RESUMO

Ragweed (Ambrosia artemisiifolia) pollen is a major endemic allergen source responsible for severe allergic manifestations in IgE-sensitized allergic patients. It contains the major allergen Amb a 1 and cross-reactive allergen molecules, such as the cytoskeletal protein profilin, Amb a 8 and calcium-binding allergens Amb a 9 and Amb a 10. To assess the importance of Amb a 1, profilin and calcium-binding allergen, the IgE reactivity profiles of clinically well-characterized 150 ragweed pollen-allergic patients were analysed regarding specific IgE levels for Amb a 1 and cross-reactive allergen molecules by quantitative ImmunoCAP measurements, IgE ELISA and by basophil activation experiments. By quantifying allergen-specific IgE levels we found that Amb a 1-specific IgE levels accounted for more than 50% of ragweed pollen-specific IgE in the majority of ragweed pollen-allergic patients. However, approximately 20% of patients were sensitized to profilin and the calcium-binding allergens, Amb a 9 and Amb a 10, respectively. As shown by IgE inhibition experiments, Amb a 8 showed extensive cross-reactivity with profilins from birch (Bet v 2), timothy grass (Phl p 12) and mugwort pollen (Art v 4) and was identified as a highly allergenic molecule by basophil activation testing. Our study indicates that molecular diagnosis performed by the quantification of specific IgE to Amb a 1, Amb a 8, Amb a 9 and Amb a 10 is useful to diagnose genuine sensitization to ragweed pollen and to identify patients who are sensitized to highly cross-reactive allergen molecules present in pollen from unrelated plants, in order to enable precision medicine-based approaches for the treatment and prevention of pollen allergy in areas with complex pollen sensitization.


Assuntos
Alérgenos , Hipersensibilidade , Humanos , Alérgenos/química , Profilinas , Cálcio , Proteínas de Plantas , Antígenos de Plantas , Extratos Vegetais , Reações Cruzadas , Imunoglobulina E/metabolismo , Ambrosia/metabolismo
6.
Clin Transl Allergy ; 12(7): e12179, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35813977

RESUMO

Background: Ragweed (Ambrosia artemisiifolia) is one of the most important allergen sources, worldwide, causing severe respiratory allergic reactions in late summer and fall, in sensitized patients. Amb a 1 has been considered as the most important allergen in ragweed but 12 ragweed pollen allergens are known. The aim of our study was to investigate IgE reactivity profiles of ragweed allergic patients and to associate them with clinical symptoms. Methods: IgE sensitization profiles from clinically well-characterized ragweed allergic patients (n = 150) were analyzed using immunoblotted ragweed pollen extract. Immunoblot inhibition experiments were performed with two Amb a 1 isoforms and CCD markers and basophil activation experiments were performed with IgE serum before and after depletion of Amb a 1-specific IgE. Results: By IgE-immunoblotting 19 different IgE reactivity patterns with and without Amb a 1-sensitization were found. The majority of patients (>95%) suffered from rhino-conjunctivitis, around 60% reported asthma-like symptoms and about 25% had skin reactions. Patients with complex IgE sensitization profiles tended to have more clinical symptoms. Serum with and without Amb a 1-specific IgE induced basophil activation. Conclusions: Ragweed pollen allergic patients exhibit complex IgE reactivity profiles to ragweed allergens including Amb a 1 isoforms and cross-reactive carbohydrates indicating the importance of Amb a 1 isoforms and additional allergens for diagnosis and allergen-specific immunotherapy of ragweed allergy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...