Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 111(8): 1279-1291, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36916776

RESUMO

In the field of tissue engineering, 3D scaffolds and cells are often combined to yield constructs that are used as therapeutics to repair or restore tissue function in patients. Viable cells are often required to achieve the intended mechanism of action for the therapy, where the live cells may build new tissue or may release factors that induce tissue regeneration. Thus, there is a need to reliably measure cell viability in 3D scaffolds as a quality attribute of a tissue-engineered medical product. Here, we developed a noninvasive, label-free, 3D optical coherence tomography (OCT) method to rapidly (2.5 min) image large sample volumes (1 mm3 ) to assess cell viability and distribution within scaffolds. OCT imaging was assessed using a model scaffold-cell system consisting of a polysaccharide-based hydrogel seeded with human Jurkat cells. Four test systems were used: hydrogel seeded with live cells, hydrogel seeded with heat-shocked or fixed dead cells and hydrogel without any cells. Time series OCT images demonstrated changes in the time-dependent speckle patterns due to refractive index (RI) variations within live cells that were not observed for pure hydrogel samples or hydrogels with dead cells. The changes in speckle patterns were used to generate live-cell contrast by image subtraction. In this way, objects with large changes in RI were binned as live cells. Using this approach, on average, OCT imaging measurements counted 326 ± 52 live cells per 0.288 mm3 for hydrogels that were seeded with 288 live cells (as determined by the acridine orange-propidium iodide cell counting method prior to seeding cells in gels). Considering the substantial uncertainties in fabricating the scaffold-cell constructs, such as the error from pipetting and counting cells, a 13% difference in the live-cell count is reasonable. Additionally, the 3D distribution of live cells was mapped within a hydrogel scaffold to assess the uniformity of their distribution across the volume. Our results demonstrate a real-time, noninvasive method to rapidly assess the spatial distribution of live cells within a 3D scaffold that could be useful for assessing tissue-engineered medical products.


Assuntos
Engenharia Tecidual , Tomografia de Coerência Óptica , Humanos , Engenharia Tecidual/métodos , Sobrevivência Celular , Alicerces Teciduais , Hidrogéis/farmacologia
2.
Biofabrication ; 15(1)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36150372

RESUMO

The use of engineered cells, tissues, and organs has the opportunity to change the way injuries and diseases are treated. Commercialization of these groundbreaking technologies has been limited in part by the complex and costly nature of their manufacture. Process-related variability and even small changes in the manufacturing process of a living product will impact its quality. Without real-time integrated detection, the magnitude and mechanism of that impact are largely unknown. Real-time and non-destructive sensor technologies are key for in-process insight and ensuring a consistent product throughout commercial scale-up and/or scale-out. The application of a measurement technology into a manufacturing process requires cell and tissue developers to understand the best way to apply a sensor to their process, and for sensor manufacturers to understand the design requirements and end-user needs. Furthermore, sensors to monitor component cells' health and phenotype need to be compatible with novel integrated and automated manufacturing equipment. This review summarizes commercially relevant sensor technologies that can detect meaningful quality attributes during the manufacturing of regenerative medicine products, the gaps within each technology, and sensor considerations for manufacturing.


Assuntos
Tecnologia Farmacêutica , Engenharia Tecidual , Controle de Qualidade , Medicina Regenerativa
3.
PLoS One ; 17(1): e0262119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35045103

RESUMO

Cell viability, an essential measurement for cell therapy products, lacks traceability. One of the most common cell viability tests is trypan blue dye exclusion where blue-stained cells are counted via brightfield imaging. Typically, live and dead cells are classified based on their pixel intensities which may vary arbitrarily making it difficult to compare results. Herein, a traceable absorbance microscopy method to determine the intracellular uptake of trypan blue is demonstrated. The intensity pixels of the brightfield images are converted to absorbance images which are used to calculate moles of trypan blue per cell. Trypan blue cell viability measurements, where trypan blue content in each cell is quantified, enable traceable live-dead classifications. To implement the absorbance microscopy method, we developed an open-source AbsorbanceQ application that generates quantitative absorbance images. The validation of absorbance microscopy is demonstrated using neutral density filters. Results from four different microscopes demonstrate a mean absolute deviation of 3% from the expected optical density values. When assessing trypan blue-stained Jurkat cells, the difference in intracellular uptake of trypan blue in heat-shock-killed cells using two different microscopes is 3.8%. Cells killed with formaldehyde take up ~50% less trypan blue as compared to the heat-shock-killed cells, suggesting that the killing mechanism affects trypan blue uptake. In a test mixture of approximately 50% live and 50% dead cells, 53% of cells were identified as dead (±6% standard deviation). Finally, to mimic batches of low-viability cells that may be encountered during a cell manufacturing process, viability was assessed for cells that were 1) overgrown in the cell culture incubator for five days or 2) incubated in DPBS at room temperature for five days. Instead of making live-dead classifications using arbitrary intensity values, absorbance imaging yields traceable units of moles that can be compared, which is useful for assuring quality for biomanufacturing processes.


Assuntos
Técnicas de Cultura de Células/métodos , Células Jurkat/citologia , Azul Tripano/química , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Formaldeído/efeitos adversos , Humanos , Células Jurkat/química , Microscopia
4.
Trends Biotechnol ; 40(2): 194-209, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34315621

RESUMO

Traditional destructive tests are used for quality assurance and control within manufacturing workflows. Their applicability to biomanufacturing is limited due to inherent constraints of the biomanufacturing process. To address this, photo- and acoustic-based nondestructive testing has risen in prominence to interrogate not only structure and function, but also to integrate quantitative measurements of biochemical composition to cross-correlate structural, compositional, and functional variances. We survey relevant literature related to single-mode and multimodal nondestructive testing of soft tissues, which adds numbers (quantitative measurements) to pictures (qualitative data). Native and tissue-engineered articular cartilage is highlighted because active biomanufacturing processes are being developed. Included are recent efforts and prominent trends focused on technologies for clinical and in-process biomanufacturing applications.


Assuntos
Cartilagem Articular , Engenharia Tecidual
6.
ACS Biomater Sci Eng ; 6(10): 5368-5376, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320558

RESUMO

A metrological perspective for thinking about the characterization of tissue engineered medical products (TEMPs) may help improve communication between researchers. During the development lifecycle of a TEMP, many product properties are measured over the long path to a product release. The selection of each measurement is designed to establish that the product is safe and efficacious (i.e., successful). However, there is often miscommunication during discussions of product characterization. The miscommunication stems from inherent assumptions that are made about the measurements. A "measurand chart" can help clarify these assumptions to enable a more coherent discussion of the value of each measurement. A measurand is defined as "the quantity or property intended to be measured". Tissue engineering measurands are discussed in terms of three case studies including "cell viability in a scaffold", "potency", and "biocompatibility". Topics including a measurement model, defining tissue engineering measurands and definitional uncertainty, are discussed to further refine thinking about tissue engineering measurands. Awareness of these concepts while discussing product characterization can enhance communication and strategic thinking so that the resulting plan is clear and purposeful.


Assuntos
Engenharia Tecidual , Incerteza
7.
Sci Adv ; 6(20): eaaz6485, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32426499

RESUMO

Eukaryotic cells in living tissues form dynamic patterns with spatially varying orientational order that affects important physiological processes such as apoptosis and cell migration. The challenge is how to impart a predesigned map of orientational order onto a growing tissue. Here, we demonstrate an approach to produce cell monolayers of human dermal fibroblasts with predesigned orientational patterns and topological defects using a photoaligned liquid crystal elastomer (LCE) that swells anisotropically in an aqueous medium. The patterns inscribed into the LCE are replicated by the tissue monolayer and cause a strong spatial variation of cells phenotype, their surface density, and number density fluctuations. Unbinding dynamics of defect pairs intrinsic to active matter is suppressed by anisotropic surface anchoring allowing the estimation of the elastic characteristics of the tissues. The demonstrated patterned LCE approach has potential to control the collective behavior of cells in living tissues, cell differentiation, and tissue morphogenesis.


Assuntos
Cristais Líquidos , Anisotropia , Elastômeros/química , Fibroblastos , Humanos , Cristais Líquidos/química , Água
8.
J Biomed Mater Res A ; 108(5): 1223-1230, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32034939

RESUMO

Control of cells behavior through topography of substrates is an important theme in biomedical applications. Among many materials used as substrates, polymers show advantages since they can be tailored by chemical functionalization. Fabrication of polymer substrates with nano- and microscale topography requires processing by lithography, microprinting, etching, and so forth. In this work, we introduce a different approach based on anisotropic elastic properties of polymerized smectic A (SmA) liquid crystal elastomer (LCE). When the SmA liquid crystal coating is deposited onto a substrate with planar alignment of the molecules, it develops nanogrooves at its free surface. After photopolymerization, these nanogrooves show an excellent ability to align human dermal fibroblasts over large areas. The alignment quality is good for both bare SmA LCE substrates and for substrates coated with fibronectin. The SmA LCE nano-topographies show a high potential for tissue engineering.


Assuntos
Elastômeros/química , Fibroblastos/citologia , Cristais Líquidos/química , Nanoestruturas/química , Anisotropia , Materiais Biocompatíveis/química , Adesão Celular , Linhagem Celular , Humanos , Análise Serial de Tecidos/instrumentação , Engenharia Tecidual/instrumentação
9.
Adv Sci (Weinh) ; 6(17): 1900785, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31508284

RESUMO

Microfabrication of complex double emulsion droplets with controlled substructures, which resemble biological cells, is an important but a highly challenging subject. Here, a new approach is proposed based on laser-induced injection of water nanodroplets into a liquid crystal (LC) drop. In contrast to the conventional top-down microfluidic fabrication, this method employs a series of bottom-up strategies such as nanodroplet injection, spontaneous and assisted coalescence, elastically driven actuation, and self-assembly. Each step is controlled precisely by adjusting the laser beam, interfacial tension, and its gradients, surface anchoring, and elasticity of the LC. Whispering gallery mode illumination is used to monitor the injection of droplets. A broad spectrum of double emulsions with a predesigned hierarchical architecture is fabricated and reconfigured by temperature, laser-induced coalescence, and injection. The proposed bottom-up method to produce customized microemulsions that are responsive to environmental cues can be used in the development of drug delivery systems, biosensors, and functional soft matter microstructures.

10.
Phys Chem Chem Phys ; 21(24): 13078-13089, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31168534

RESUMO

We report dynamic light scattering measurements of the orientational (Frank) elastic constants and associated viscosities among a homologous series of a liquid crystalline dimer, trimer, and tetramer exhibiting a uniaxial nematic (N) to twist-bend nematic (NTB) phase transition. The elastic constants for director splay (K11), twist (K22) and bend (K33) exhibit the relations K11 > K22 > K33 and K11/K22 > 2 over the bulk of the N phase. Their behavior near the N-NTB transition shows dependency on the parity of the number (n) of the rigid mesomorphic units in the flexible n-mers. Namely, the bend constant K33 in the dimer and tetramer turns upward and starts increasing close to the transition, following a monotonic decrease through most of the N phases. In contrast, K33 for the trimer flattens off just above the transition and shows no pretransitional enhancement. The twist constant K22 increases pretransitionally in both even and odd n-mers, but more weakly so in the trimer, while K11 increases steadily on cooling without evidence of pretransitional behavior in any n-mer. The viscosities associated with pure splay, twist-dominated twist-bend, and pure bend fluctuations in the N phase are comparable in magnitude to those of rod-like monomers. All three viscosities increase with decreasing temperature, but the bend viscosity in particular grows sharply near the N-NTB transition. The N-NTB pretransitional behavior is shown to be in qualitative agreement with the predictions of a coarse-grained theory, which models the NTB phase as a "pseudo-layered" structure with the symmetry (but not the mass density wave) of a smectic-A* phase.

11.
ACS Appl Mater Interfaces ; 11(16): 15007-15013, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30912438

RESUMO

Controlled placement of microparticles is of prime importance in production of microscale superstructures. In this work, we demonstrate the remote control of microparticle placement using a photoactivated surface profile of a liquid crystal elastomer (LCE) coating. We employ light-responsive LCEs with preimposed patterns of molecular orientation (director) in the plane of coating. Upon UV illumination, these in-plane director distortions translate into deterministic topographic change of the LCE coating. Microparticles placed at the interface between the LCE coating and water, guided by gravity, gather at the bottom of photoinduced troughs. The effect is reversible: when the substrates are irradiated with visible light, the coatings become flat and the microparticle arrays disorganize again. The proposed noncontact manipulation of particles by photoactivated LCEs may be useful in development of drug delivery or tissue engineering applications.

12.
Opt Lett ; 43(8): 1850-1853, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29652381

RESUMO

Selective reflection of light by oblique helicoidal cholesteric (ChOH) can be tuned in a very broad spectral range by an applied electric field. In this Letter, we demonstrate that the peak wavelength of the selective reflection can be controlled by the surface alignment of the director in sandwich cells. The peak wavelength is blue-shifted when the surface alignment is perpendicular to the bounding plates and red-shifted when it is planar. The effect is explained by the electric field redistribution within the cell caused by a spatially varying heliconical ChOH structure. The observed phenomenon can be used in sensing applications.

13.
Nat Commun ; 9(1): 1130, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540690

RESUMO

The original version of this Article contained errors in Figs. 1a, 2a, 3a, and 4b, in which the units on the scale bars incorrectly read 'µm' rather than the correct 'nm.' This has been corrected in both the PDF and HTML versions of the Article.

14.
Nat Commun ; 9(1): 456, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386512

RESUMO

Stimuli-responsive liquid crystal elastomers with molecular orientation coupled to rubber-like elasticity show a great potential as elements in soft robotics, sensing, and transport systems. The orientational order defines their mechanical response to external stimuli, such as thermally activated muscle-like contraction. Here we demonstrate a dynamic thermal control of the surface topography of an elastomer prepared as a coating with a pattern of in-plane molecular orientation. The inscribed pattern determines whether the coating develops elevations, depressions, or in-plane deformations when the temperature changes. The deterministic dependence of the out-of-plane dynamic profile on the in-plane orientation is explained by activation forces. These forces are caused by stretching-contraction of the polymer networks and by spatially varying molecular orientation. The activation force concept brings the responsive liquid crystal elastomers into the domain of active matter. The demonstrated relationship can be used to design coatings with functionalities that mimic biological tissues such as skin.

15.
Phys Rev E ; 96(6-1): 062704, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29347367

RESUMO

We present a comprehensive set of measurements of optical, dielectric, diamagnetic, elastic, and viscous properties in the nematic (N) phase formed by a liquid crystalline dimer. The studied dimer, 1,7-bis-4-(4'-cyanobiphenyl) heptane (CB7CB), is composed of two rigid rodlike cyanobiphenyl segments connected by a flexible aliphatic link with seven methyl groups. CB7CB and other nematic dimers are of interest due to their tendency to adopt bent configurations and to form two states possessing a modulated nematic director structure, namely, the twist-bend nematic, N_{TB}, and the oblique helicoidal cholesteric, Ch_{OH}, which occurs when the achiral dimer is doped with a chiral additive and exposed to an external electric or magnetic field. We characterize the material parameters as functions of temperature in the entire temperature range of the N phase, including the pretransitional regions near the N-N_{TB} and N-to-isotropic (I) transitions. The splay constant K_{11} is determined by two direct and independent techniques, namely, detection of the Frederiks transition and measurement of director fluctuation amplitudes by dynamic light scattering (DLS). The bend K_{33} and twist K_{22} constants are measured by DLS. K_{33}, being the smallest of the three constants, shows a strong nonmonotonous temperature dependence with a negative slope in both N-I and N-N_{TB} pretransitional regions. The measured ratio K_{11}/K_{22} is larger than 2 in the entire nematic temperature range. The orientational viscosities associated with splay, twist, and bend fluctuations in the N phase are comparable to those of nematics formed by rodlike molecules. All three show strong temperature dependence, increasing sharply near the N-N_{TB} transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...