Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Arch Dermatol Res ; 316(5): 190, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775976

RESUMO

Hair is a biofilament with unique multi-dimensional values. In human, in addition to physiologic impacts, hair loss and hair related disorders can affect characteristic features, emotions, and social behaviors. Despite significant advancement, there is a dire need to explore alternative novel therapies with higher efficacy, less side effects and lower cost to promote hair growth to treat hair deficiency. Glucocorticoid-induced leucine zipper (GILZ) is a protein rapidly induced by glucocorticoids. Studies from our group and many others have suggested that a synthetic form of GILZ, TAT-GILZ, a fusion peptide of trans-activator of transcription and GILZ, can function as a potent regulator of inflammatory responses, re-establishing and maintaining the homeostasis. In this study, we investigate whether TAT-GILZ could promote and contribute to hair growth. For our pre-clinical model, we used 9-12 week-old male BALB/c and nude (athymic, nu/J) mice. We applied TAT-GILZ and/or TAT (vehicle) intradermally to depilated/hairless mice. Direct observation, histological examination, and Immunofluorescence imaging were used to assess the effects and compare different treatments. In addition, we tested two current treatment for hair loss/growth, finasteride and minoxidil, for optimal evaluation of TAT-GILZ in a comparative fashion. Our results showed, for the first time, that synthetic TAT-GILZ peptide accelerated hair growth on depilated dorsal skin of BALB/c and induced hair on the skin of athymic mice where hair growth was not expected. In addition, TAT-GILZ was able to enhance hair follicle stem cells and re-established the homeostasis by increasing counter inflammatory signals including higher regulatory T cells and glucocorticoid receptors. In conclusion, our novel findings suggest that reprofiling synthetic TAT-GILZ peptide could promote hair growth by increasing hair follicle stem cells and re-establishing homeostasis.


Assuntos
Alopecia , Folículo Piloso , Cabelo , Fatores de Transcrição , Animais , Masculino , Camundongos , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Humanos , Alopecia/tratamento farmacológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/administração & dosagem , Camundongos Nus , Camundongos Pelados , Modelos Animais de Doenças , Glucocorticoides/farmacologia
2.
Med Oncol ; 41(6): 140, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713310

RESUMO

Glioblastoma (GBM) is an extremely aggressive primary brain tumor with poor prognosis, short survival time post-diagnosis and high recurrence. Currently, no cure for GBM exists. The identification of an effective therapeutic modality for GBM remains a high priority amongst medical professionals and researches. In recent studies, inhalant cannabidiol (CBD) has demonstrated promise in effectively inhibiting GBM tumor growth. However, exactly how CBD treatment affects the physiology of these tumor cells remains unclear. Stress granules (SG) (a sub-class of biomolecular condensates (BMC)) are dynamic, membrane-less intracellular microstructures which contain proteins and nucleic acids. The formation and signaling of SGs and BMCs plays a significant role in regulating malignancies. This study investigates whether inhaled CBD may play an intervening role towards SGs in GBM tumor cells. Integrated bioinformatics approaches were preformed to gain further insights. This includes use of Immunohistochemistry and flow cytometry to measure SGs, as well as expression and phosphorylation of eukaryotic initiation factor-2α (eIF2α). The findings of this study reveal that CBD receptors (and co-regulated genes) have the potential to play an important biological role in the formation of BMCs within GBM. In this experiment, CBD treatment significantly increased the volume of TIAR-1. This increase directly correlated with elevation in both eIF2α expression and p-eIF2α in CBD treated tissues in comparison to the placebo group (p < 0.05). These results suggest that inhalant CBD significantly up-regulated SGs in GBM, and thus support a theory of targeting BMCs as a potential therapeutic substrate for treating GBM.


Assuntos
Neoplasias Encefálicas , Canabidiol , Glioblastoma , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Canabidiol/farmacologia , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Grânulos de Estresse/metabolismo , Grânulos de Estresse/efeitos dos fármacos , Linhagem Celular Tumoral , Fator de Iniciação 2 em Eucariotos/metabolismo
4.
EPMA J ; 15(1): 1-23, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463624

RESUMO

Worldwide stroke is the second leading cause of death and the third leading cause of death and disability combined. The estimated global economic burden by stroke is over US$891 billion per year. Within three decades (1990-2019), the incidence increased by 70%, deaths by 43%, prevalence by 102%, and DALYs by 143%. Of over 100 million people affected by stroke, about 76% are ischemic stroke (IS) patients recorded worldwide. Contextually, ischemic stroke moves into particular focus of multi-professional groups including researchers, healthcare industry, economists, and policy-makers. Risk factors of ischemic stroke demonstrate sufficient space for cost-effective prevention interventions in primary (suboptimal health) and secondary (clinically manifested collateral disorders contributing to stroke risks) care. These risks are interrelated. For example, sedentary lifestyle and toxic environment both cause mitochondrial stress, systemic low-grade inflammation and accelerated ageing; inflammageing is a low-grade inflammation associated with accelerated ageing and poor stroke outcomes. Stress overload, decreased mitochondrial bioenergetics and hypomagnesaemia are associated with systemic vasospasm and ischemic lesions in heart and brain of all age groups including teenagers. Imbalanced dietary patterns poor in folate but rich in red and processed meat, refined grains, and sugary beverages are associated with hyperhomocysteinaemia, systemic inflammation, small vessel disease, and increased IS risks. Ongoing 3PM research towards vulnerable groups in the population promoted by the European Association for Predictive, Preventive and Personalised Medicine (EPMA) demonstrates promising results for the holistic patient-friendly non-invasive approach utilising tear fluid-based health risk assessment, mitochondria as a vital biosensor and AI-based multi-professional data interpretation as reported here by the EPMA expert group. Collected data demonstrate that IS-relevant risks and corresponding molecular pathways are interrelated. For examples, there is an evident overlap between molecular patterns involved in IS and diabetic retinopathy as an early indicator of IS risk in diabetic patients. Just to exemplify some of them such as the 5-aminolevulinic acid/pathway, which are also characteristic for an altered mitophagy patterns, insomnia, stress regulation and modulation of microbiota-gut-brain crosstalk. Further, ceramides are considered mediators of oxidative stress and inflammation in cardiometabolic disease, negatively affecting mitochondrial respiratory chain function and fission/fusion activity, altered sleep-wake behaviour, vascular stiffness and remodelling. Xanthine/pathway regulation is involved in mitochondrial homeostasis and stress-driven anxiety-like behaviour as well as molecular mechanisms of arterial stiffness. In order to assess individual health risks, an application of machine learning (AI tool) is essential for an accurate data interpretation performed by the multiparametric analysis. Aspects presented in the paper include the needs of young populations and elderly, personalised risk assessment in primary and secondary care, cost-efficacy, application of innovative technologies and screening programmes, advanced education measures for professionals and general population-all are essential pillars for the paradigm change from reactive medical services to 3PM in the overall IS management promoted by the EPMA.

5.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339232

RESUMO

Colorectal cancer (CRC) is one of the most heterogeneous and deadly diseases, with a global incidence of 1.5 million cases per year. Genomics has revolutionized the clinical management of CRC by enabling comprehensive molecular profiling of cancer. However, a deeper understanding of the molecular factors is needed to identify new prognostic and predictive markers that can assist in designing more effective therapeutic regimens for the improved management of CRC. Recent breakthroughs in single-cell analysis have identified new cell subtypes that play a critical role in tumor progression and could serve as potential therapeutic targets. Spatial analysis of the transcriptome and proteome holds the key to unlocking pathogenic cellular interactions, while liquid biopsy profiling of molecular variables from serum holds great potential for monitoring therapy resistance. Furthermore, gene expression signatures from various pathways have emerged as promising prognostic indicators in colorectal cancer and have the potential to enhance the development of equitable medicine. The advancement of these technologies for identifying new markers, particularly in the domain of predictive and personalized medicine, has the potential to improve the management of patients with CRC. Further investigations utilizing similar methods could uncover molecular subtypes specific to emerging therapies, potentially strengthening the development of personalized medicine for CRC patients.

6.
Pharmacol Rep ; 76(1): 98-111, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38214881

RESUMO

BACKGROUND: Obstructive nephropathy is a condition often caused by urinary tract obstruction either anatomical (e.g., tumors), mechanical (e.g., urolithiasis), or compression (e.g., pregnancy) and can progress to chronic kidney disease (CKD). Studies have shown sexual dimorphism in CKD, where males were found to have a more rapid decline in kidney function following kidney injury compared to age-matched females. Protocatechuic acid (PCA), an anti-oxidant and anti-inflammatory polyphenolic compound, has demonstrated promising effects in mitigating drug-induced kidney injuries. The current study aims to explore sexual dimorphism in kidney injury after unilateral ureteral obstruction (UUO) and assess whether PCA treatment can mitigate kidney injury in both sexes. METHODS: UUO was induced in 10-12 weeks old male and female C57BL/6J mice. Mice were categorized into four groups (n = 6-8/group); Sham, Sham plus PCA (100 mg/kg, I.P daily), UUO, and UUO plus PCA. RESULTS: After 2 weeks of induction of UUO, markers of kidney oxidative stress (TBARs), inflammation (IL-1α and IL-6), tubular injury (neutrophil gelatinase-associated lipocalin, NGAL and urinary kidney injury molecule-1, KIM-1), fibrosis (Masson's trichrome staining, collagen IV expression, MMP-2 and MMP-9) and apoptosis (TUNEL+ cells, active caspase-1 and caspase-3) were significantly elevated in both males and females relative to their sham counterparts. Males exhibited significantly greater kidney oxidative stress, inflammation, fibrosis, and apoptosis after induction of UUO when compared to females. PCA treatment significantly attenuated UUO-induced kidney injury, inflammation, fibrosis, and apoptosis in both sexes. CONCLUSION: Our findings suggest a differential gender response to UUO-induced kidney injury with males being more sensitive to UUO-induced kidney inflammation, fibrosis, and apoptosis than age-matched females. Importantly, PCA treatment reduced UUO-induced kidney injury in a sex-independent manner which might be attributed to its anti-oxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic properties.


Assuntos
Hidroxibenzoatos , Nefropatias , Insuficiência Renal Crônica , Obstrução Ureteral , Feminino , Camundongos , Masculino , Animais , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Caracteres Sexuais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Rim , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Nefropatias/prevenção & controle , Insuficiência Renal Crônica/metabolismo , Apoptose , Inflamação/metabolismo , Fibrose , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
7.
Transl Stroke Res ; 15(2): 446-461, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-36689081

RESUMO

Vascular cognitive impairment and dementia (VCID) are a growing threat to public health without any known treatment. The bilateral common carotid artery stenosis (BCAS) mouse model is valid for VCID. Previously, we have reported that remote ischemic postconditioning (RIPostC) during chronic cerebral hypoperfusion (CCH) induced by BCAS increases cerebral blood flow (CBF), improves cognitive function, and reduces white matter damage. We hypothesized that physical exercise (EXR) would augment CBF during CCH and prevent cognitive impairment in the BCAS model. BCAS was performed in C57/B6 mice of both sexes to establish CCH. One week after the BCAS surgery, mice were randomized to treadmill exercise once daily or no EXR for four weeks. CBF was monitored with an LSCI pre-, post, and 4 weeks post-BCAS. Cognitive testing was performed for post-BCAS after exercise training, and brain tissue was harvested for histopathology and biochemical test. BCAS led to chronic hypoperfusion resulting in impaired cognitive function and other functional outcomes. Histological examination revealed that BCAS caused changes in neuronal morphology and cell death in the cortex and hippocampus. Immunoblotting showed that BCAS was associated with a significant downregulate of AMPK and pAMPK and NOS3 and pNOS3. BCAS also decreased red blood cell (RBC) deformability. EXR therapy increased and sustained improved CBF and cognitive function, muscular strength, reduced cell death, and loss of white matter. EXR is effective in the BCAS model, improving CBF and cognitive function, reducing white matter damage, improving RBC deformability, and increasing RBC NOS3 and AMPK. The mechanisms by which EXR improves CBF and attenuates tissue damage need further investigation.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Demência Vascular , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Isquemia Encefálica/complicações , Isquemia Encefálica/terapia , Circulação Cerebrovascular/fisiologia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/complicações , Demência Vascular/etiologia , Demência Vascular/terapia , Demência Vascular/patologia , Modelos Animais de Doenças
8.
Transl Stroke Res ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091188

RESUMO

Ischemic stroke is caused by obstructed cerebral blood flow, which results in neurological injury and poor outcomes. Pro-inflammatory signaling from both residential and infiltrating immune cells potentiates cerebral injury and worsens patient outcomes after stroke. While the occurrence of a stroke exhibits a time-of-day-dependent pattern, it remains unclear whether disrupted circadian rhythms modulate post-stroke immunity. In this study, we hypothesized that stroke timing differentially affects immune activation in mice. Following middle cerebral artery occlusion (MCAO), circadian genes BMAL1, CLOCK, Cry1, and Cry2 elevated at ZT06, with a significant difference between ZT06 and ZT18. Conversely, expression of the negative limb circadian clock gene, Per1, decreased at ZT06 and ZT18 in stroke mice compared to sham. Paralleling these circadian gene expression changes, we observed a significant increase in TNF-α and a decrease in IL-10 expression at 48 h post-MCAO, when the procedure was performed at ZT06 (MCAO-ZT6), which corresponds to a deep sleep period, as compared to when the stroke was induced at ZT12 (MCAO-ZT12), ZT18 (MCAO-ZT18), or ZT0 (MCAO-ZT12). Similarly, increased pro-inflammatory, decreased anti-inflammatory monocytes, and increased NLRP3 were observed in blood, while changes in the expression of CD11b and Iba1 were noted within brain tissue at 48 h of MCAO-ZT06, as compared to MCAO-ZT18. Consistent with the increased immune response, infarct volume and sensorimotor deficits were greater in MCAO-ZT06 mice compared to MCAO-ZT18 mice at 48 h. Finally, we found reduced weight and length of the spleen while splenocytes showed significant time-dependent changes in Tregs, Bregs, and monocytes in MCAO-ZT06 mice. Taken together, this study demonstrates that circulating and splenic immune responses following ischemic stroke exhibit a circadian expression pattern which may contribute to time-of-day-dependent stroke outcomes.

9.
J Thromb Haemost ; 21(9): 2473-2484, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37196848

RESUMO

BACKGROUND: Respiratory failure is the primary cause of death in patients with COVID-19, whereas coagulopathy is associated with excessive inflammation and multiorgan failure. Neutrophil extracellular traps (NETs) may exacerbate inflammation and provide a scaffold for thrombus formation. OBJECTIVES: The goal of this study was to determine whether degradation of NETs by recombinant human DNase-I (rhDNase), a safe, Food and Drug Administration-approved drug, reduces excessive inflammation, reverses aberrant coagulation, and improves pulmonary perfusion after experimental acute respiratory distress syndrome (ARDS). METHODS: Intranasal poly(I:C), a synthetic double-stranded RNA, was administered to adult mice for 3 consecutive days to simulate a viral infection, and these subjects were randomized to treatment arms, which received either an intravenous placebo or rhDNase. The effects of rhDNase on immune activation, platelet aggregation, and coagulation were assessed in mice and donor human blood. RESULTS: NETs were observed in bronchoalveolar lavage fluid and within regions of hypoxic lung tissue after experimental ARDS. The administration of rhDNase mitigated peribronchiolar, perivascular, and interstitial inflammation induced by poly(I:C). In parallel, rhDNase degraded NETs, attenuated platelet-NET aggregates, reduced platelet activation, and normalized the clotting time to improve regional perfusion, as observed using gross morphology, histology, and microcomputed tomographic imaging in mice. Similarly, rhDNase reduced NETs and attenuated platelet activation in human blood. CONCLUSION: NETs exacerbate inflammation and promote aberrant coagulation by providing a scaffold for aggregated platelets after experimental ARDS. Intravenous administration of rhDNase degrades NETs and attenuates coagulopathy in ARDS, providing a promising translational approach to improve pulmonary structure and function after ARDS.


Assuntos
COVID-19 , Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Adulto , Humanos , Animais , Camundongos , Armadilhas Extracelulares/metabolismo , COVID-19/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Inflamação/metabolismo , Neutrófilos/metabolismo
10.
Aging Dis ; 14(6): 2303-2316, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199586

RESUMO

Emerging evidence shows that the microRNA-141-3p is involved in various age-related pathologies. Previously, our group and others reported elevated levels of miR-141-3p in several tissues and organs with age. Here, we inhibited the expression of miR-141-3p using antagomir (Anti-miR-141-3p) in aged mice and explored its role in healthy aging. We analyzed serum (cytokine profiling), spleen (immune profiling), and overall musculoskeletal phenotype. We found decreased levels of pro-inflammatory cytokines (such as TNF-α, IL-1ß, IFN-γ) in serum with Anti-miR-141-3p treatment. The flow-cytometry analysis on splenocytes revealed decreased M1 (pro-inflammatory) and increased M2 (anti-inflammatory) populations. We also found improved bone microstructure and muscle fiber size with Anti-miR-141-3p treatment. Molecular analysis revealed that miR-141-3p regulates the expression of AU-rich RNA-binding factor 1 (AUF1) and promotes senescence (p21, p16) and pro-inflammatory (TNF-α, IL-1ß, IFN-γ) environment whereas inhibiting miR-141-3p prevents these effects. Furthermore, we demonstrated that the expression of FOXO-1 transcription factor was reduced with Anti-miR-141-3p and elevated with silencing of AUF1 (siRNA-AUF1), suggesting crosstalk between miR-141-3p and FOXO-1. Overall, our proof-of-concept study demonstrates that inhibiting miR-141-3p could be a potential strategy to improve immune, bone, and muscle health with age.

11.
Neurobiol Dis ; 180: 106090, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934795

RESUMO

Traumatic brain injury (TBI) is associated with mortality and morbidity worldwide. Accumulating pre-clinical and clinical data suggests TBI is the leading extrinsic cause of progressive neurodegeneration. Neurological deterioration after either a single moderate-severe TBI or repetitive mild TBI often resembles dementia in aged populations; however, no currently approved therapies adequately mitigate neurodegeneration. Inflammation correlates with neurodegenerative changes and cognitive dysfunction for years post-TBI, suggesting a potential association between immune activation and both age- and TBI-induced cognitive decline. Inflammaging, a chronic, low-grade sterile inflammation associated with natural aging, promotes cognitive decline. Cellular senescence and the subsequent development of a senescence associated secretory phenotype (SASP) promotes inflammaging and cognitive aging, although the functional association between senescent cells and neurodegeneration is poorly defined after TBI. In this mini-review, we provide an overview of the pre-clinical and clinical evidence linking cellular senescence with poor TBI outcomes. We also discuss the current knowledge and future potential for senotherapeutics, including senolytics and senomorphics, which kill and/or modulate senescent cells, as potential therapeutics after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Envelhecimento Cognitivo , Humanos , Senescência Celular , Lesões Encefálicas Traumáticas/complicações , Inflamação
12.
Hum Cell ; 36(3): 1204-1210, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36737540

RESUMO

Lung cancer remains the most chronic form of cancer and the leading cause of cancer mortality in the world. Despite significant improvements in the treatment of lung cancer, the current therapeutic interventions are only partially effective, necessitating the continued search for better, novel alternative treatments. Angiogenesis and cancer stem cells play a central role in the initiation and propagation of cancers. Tumor angiogenesis is triggered by an angiogenic switch when pro-angiogenic factors exceed anti-angiogenic components. Although many anti-angiogenic agents are used in cancer treatment, there are therapeutic limitations with significant side effects. In recent years, cannabinoids have been investigated extensively for their potential anti-neoplastic effects. Our previous findings showed that cannabidiol (CBD) could impede tumor growth in mouse models of melanoma and glioblastoma. Importantly, CBD has been suggested to possess anti-angiogenic activity. In this study, we tested, for the first time, inhalant CBD in the treatment of heterotopic lung cancer and whether such potential effects could reduce cancer stem cell numbers and inhibit tumor angiogenesis. We implanted NCI H1437 human lung cancer cells in nude mice and treated the mice with inhalant CBD or placebo. The outcomes were measured by tumor size and imaging, as well as by immunohistochemistry and flow cytometric analysis for CD44, VEGF, and P-selectin. Our findings showed that CBD decreased tumor growth rate and suppressed expression of CD44 and the angiogenic factors VEGF and P-selectin. These results suggest, for the first time, that inhalant CBD can impede lung cancer growth by suppressing CD44 and angiogenesis.


Assuntos
Canabidiol , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Selectina-P , Fator A de Crescimento do Endotélio Vascular , Camundongos Nus , Neoplasias Pulmonares/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia
13.
Exp Neurol ; 361: 114320, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36627040

RESUMO

Endocannabinoids [2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)], endogenously produced arachidonate-based lipids, are anti-inflammatory physiological ligands for two known cannabinoid receptors, CB1 and CB2, yet the molecular and cellular mechanisms underlying their effects after brain injury are poorly defined. In the present study, we hypothesize that traumatic brain injury (TBI)-induced loss of endocannabinoids exaggerates neurovascular injury, compromises brain-cerebrospinal fluid (CSF) barriers (BCB) and causes behavioral dysfunction. Preliminary analysis in human CSF and plasma indicates changes in endocannabinoid levels. This encouraged us to investigate the levels of endocannabinoid-metabolizing enzymes in a mouse model of controlled cortical impact (CCI). Reductions in endocannabinoid (2-AG and AEA) levels in plasma were supported by higher expression of their respective metabolizing enzymes, monoacylglycerol lipase (MAGL), fatty acid amide hydrolase (FAAH), and cyclooxygenase 2 (Cox-2) in the post-TBI mouse brain. Following increased metabolism of endocannabinoids post-TBI, we observed increased expression of CB2, non-cannabinoid receptor Transient receptor potential vanilloid-1 (TRPV1), aquaporin 4 (AQP4), ionized calcium binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and acute reduction in cerebral blood flow (CBF). The BCB and pericontusional cortex showed altered endocannabinoid expressions and reduction in ventricular volume. Finally, loss of motor functions and induced anxiety behaviors were observed in these TBI mice. Taken together, our findings suggest endocannabinoids and their metabolizing enzymes play an important role in the brain and BCB integrity and highlight the need for more extensive studies on these mechanisms.


Assuntos
Antineoplásicos , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Camundongos , Humanos , Animais , Endocanabinoides/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/complicações , Receptor CB1 de Canabinoide/metabolismo
14.
Diabetes ; 72(2): 245-260, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367881

RESUMO

Preferential energy storage in subcutaneous adipose tissue (SAT) confers protection against obesity-induced pathophysiology in females. Females also exhibit distinct immunological responses, relative to males. These differences are often attributed to sex hormones, but reciprocal interactions between metabolism, immunity, and gonadal steroids remain poorly understood. We systematically characterized adipose tissue hypertrophy, sex steroids, and inflammation in male and female mice after increasing durations of high-fat diet (HFD)-induced obesity. After observing that sex differences in adipose tissue distribution before HFD were correlated with lasting protection against inflammation in females, we hypothesized that a priori differences in the ratio of subcutaneous to visceral fat might mediate this relationship. To test this, male and female mice underwent SAT lipectomy (LPX) or sham surgery before HFD challenge, followed by analysis of glial reactivity, adipose tissue inflammation, and reproductive steroids. Because LPX eliminated female resistance to the proinflammatory effects of HFD without changing circulating sex hormones, we conclude that sexually dimorphic organization of subcutaneous and visceral fat determines susceptibility to inflammation in obesity.


Assuntos
Doenças Neuroinflamatórias , Caracteres Sexuais , Feminino , Masculino , Camundongos , Animais , Distribuição Tecidual , Obesidade/metabolismo , Inflamação , Hormônios Esteroides Gonadais
15.
Neurochem Int ; 162: 105457, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442686

RESUMO

The circadian system is widely involved in the various pathological outcomes affected by time dimension changes. In the brain, the master circadian clock, also known as the "pacemaker," is present in the hypothalamus's suprachiasmatic nucleus (SCN). The SCN consists of molecular circadian clocks that operate in each neuron and other brain cells. These circadian mechanisms are controlled by the transcription and translation of specific genes such as the clock circadian regulator (Clock) and brain and muscle ARNT-Like 1 (Bmal1). Period (Per1-3) and cryptochrome (Cry1 and 2) negatively feedback and regulate the clock genes. Variations in the circadian cycle and these clock genes can affect stroke outcomes. Studies suggest that the peak stroke occurs in the morning after patients awaken from sleep, while stroke severity and poor outcomes worsen at midnight. The main risk factor associated with stroke is high blood pressure (hypertension). Blood pressure usually dips by 15-20% during sleep, but many hypertensives do not display this normal dipping pattern and are non-dippers. A sleep blood pressure is the primary determinant of stroke risk. This article discusses the possible mechanism associated with circadian rhythm and stroke outcomes.


Assuntos
Relógios Circadianos , Acidente Vascular Cerebral , Humanos , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/fisiologia , Encéfalo , Acidente Vascular Cerebral/genética , Fatores de Transcrição ARNTL , Criptocromos/genética
16.
Cannabis Cannabinoid Res ; 8(5): 824-834, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-34918964

RESUMO

Introduction: Glioblastoma (GBM) is the most common invasive brain tumor composed of diverse cell types with poor prognosis. The highly complex tumor microenvironment (TME) and its interaction with tumor cells play important roles in the development, progression, and durability of GBM. Angiogenic and immune factors are two major components of TME of GBM; their interplay is a major determinant of tumor vascularization, immune profile, as well as immune unresponsiveness of GBM. Given the ineffectiveness of current standard therapies (surgery, radiotherapy, and concomitant chemotherapy) in managing patients with GBM, it is necessary to develop new ways of treating these lethal brain tumors. Targeting TME, altering tumor ecosystem may be a viable therapeutic strategy with beneficial effects for patients in their fight against GBM. Materials and Methods: Given the potential therapeutic effects of cannabidiol (CBD) in a wide spectrum of diseases, including malignancies, we tested, for the first time, whether inhalant CBD can inhibit GBM tumor growth using a well-established orthotopic murine model. Optical imaging, histology, immunohistochemistry, and flow cytometry were employed to describe the outcomes such as tumor progression, cancer cell signaling pathways, and the TME. Results: Our findings showed that inhalation of CBD was able to not only limit the tumor growth but also to alter the dynamics of TME by repressing P-selectin, apelin, and interleukin (IL)-8, as well as blocking a key immune checkpoint-indoleamine 2,3-dioxygenase (IDO). In addition, CBD enhanced the cluster of differentiation (CD) 103 expression, indicating improved antigen presentation, promoted CD8 immune responses, and reduced innate Lymphoid Cells within the tumor. Conclusion: Overall, our novel findings support the possible therapeutic role of inhaled CBD as an effective, relatively safe, and easy to administer treatment adjunct for GBM with significant impacts on the cellular and molecular signaling of TME, warranting further research.


Assuntos
Neoplasias Encefálicas , Canabidiol , Glioblastoma , Humanos , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Microambiente Tumoral , Ecossistema , Imunidade Inata , Linhagem Celular Tumoral , Linfócitos/metabolismo , Linfócitos/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia
17.
Iran J Biotechnol ; 21(4): e3673, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38269199

RESUMO

Background: Dental enamel formation is a complex process that is regulated by various genes. One such gene, Family With Sequence Similarity 83 Member H (Fam83h), has been identified as an essential factor for dental enamel formation. Additionally, Fam83h has been found to be potentially linked to the Wnt/ß-catenin pathway. Objectives: This study aimed to investigate the effects of the Fam83h knockout gene on mineralization and formation of teeth, along with mediators of the Wnt/ß-catenin pathway as a development aspect in mice. Materials and Methods: To confirm the Fam83h-KnockOut mice, both Sanger sequencing and Western blot methods were used. then used qPCR to measure the expression levels of genes related to tooth mineralization and formation of dental root, including Fam20a, Dspp, Dmp1, Enam, Ambn, Sppl2a, Mmp20, and Wnt/ß-catenin pathway mediators, in both the Fam83h-Knockout and wild-type mice at 5, 11 and 18 days of age. also the expression level of Fgf10 and mediators of the Wnt/ß-catenin pathway was measured in the skin of both Knockout and wild-type mice using qPCR. A histological assessment was then performed to further investigate the results. Results: A significant reduction in the expression levels of Ambn, Mmp20, Dspp, and Fgf10 in the dental root of Fam83h-Knockout mice compared to their wild-type counterparts was demonstrated by our results, indicating potential disruptions in tooth development. Significant down-regulation of CK1a, CK1e, and ß-catenin in the dental root of Fam83h-Knockout mice was associated with a reduction in mineralization and formation-related gene. Additionally, the skin analysis of Fam83h-Knockout mice revealed reduced levels of Fgf10, CK1a, CK1e, and ß-catenin. Further histological assessment confirmed that the concurrent reduction of Fgf10 expression level and Wnt/ß-catenin genes were associated with alterations in hair follicle maturation. Conclusions: The concurrent reduction in the expression level of both Wnt/ß-catenin mediators and mineralization-related genes, resulting in the disruption of dental mineralization and formation, was caused by the deficiency of Fam83h. Our findings suggest a cumulative effect and multi-factorial interplay between Fam83h, Wnt/Β-Catenin signaling, and dental mineralization-related genes subsequently, during the dental formation process.

18.
Front Physiol ; 13: 1006951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304583

RESUMO

Apoptosis is a physiological and anti-inflammatory form of cell death that is indispensable for normal physiology and homeostasis. Several studies have reported aberrant activation of apoptosis in various tissues at the onset of hypertension. However, the functional significance of apoptosis during essential hypertension remains largely undefined. The current study was designed to test the hypothesis that apoptosis contributes to sex differences in blood pressure and the T cell profile in spontaneously hypertensive rats (SHR). Apoptosis was measured in kidney, aorta and spleen of 13-week-old adult hypertensive male and female SHR. Female SHR had greater renal and aortic apoptosis compared to age-matched males; apoptosis in the spleen was comparable between the sexes. Based on well-established sex differences in hypertension, we tested the hypothesis that greater apoptosis in female SHR contributes to the lower BP and pro-inflammatory profile compared to males. Male and female SHR were randomized to receive vehicle or ZVAD-FMK, a cell permeable pan-caspase inhibitor, in established hypertension from 13 to 15 weeks of age or at the onset of hypertension from 6 to 12 weeks or age. Treatment with ZVAD-FMK lowered renal apoptosis in both studies, yet neither BP nor renal T cells were altered in either male or female SHR. These results suggest that apoptosis does not contribute to the control or maintenance of BP in male or female SHR or sex differences in renal T cells.

19.
EPMA J ; 13(3): 487-498, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35762010

RESUMO

Purpose: We investigated whether ovarian cancer could alter the genital microbiota in a specific way with clinical values. Furthermore, we proposed how such changes could be envisioned in a paradigm of predictive, preventive, and personalized medicine (PPPM). Methods: The samples were collected using cotton swabs from the cervical, uterine cavity, fallopian tubes, and ovaries of patients subjected to the surgical procedures for the malignant/benign lesions. All samples were then analyzed by metagenomic shotgun sequencing. The distribution patterns and characteristics of the microbiota in the reproductive tract of subjects were analyzed and were interpreted in relation to the clinical outcomes of the subjects. Results: While the ovarian cancer was able to alter the genital microbiota, the bacteria were the dominant microorganisms in all samples across all cohorts in the study (median 99%). The microbiota of the upper female reproductive tract were mainly from the cervical, identified by low bacterial biomass and high bacterial diversity. Ovarian cancer had a distinct microbiota signature. The tubal ligation affects its microbial distribution. There were no different species on the surface of platinum-sensitive ovarian tissues compared to samples from platinum-resistant patients. Conclusion: The ovarian cancer-induced changes in microbiota magnify the potential of microbiota as a biotherapeutic modality in the treatment of ovarian cancer in this study and very likely for several malignancies and other conditions. Our findings demonstrated, for the first time, that microbiota could be dissected and applied in more specific fashion based on a predictive, preventive, and personalized medicine (PPPM) model in the treatment of ovarian cancer. Utilizing microbiota portfolio in a PPPM system in ovarian cancer would provide a unique opportunity to a clinically intelligent and novel approach in the treatment of ovarian cancer as well as several other conditions and malignancies. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-022-00286-1.

20.
Front Neurosci ; 16: 791035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645722

RESUMO

Spontaneous Intracerebral hemorrhage (ICH) is a devastating injury that accounts for 10-15% of all strokes. The rupture of cerebral blood vessels damaged by hypertension or cerebral amyloid angiopathy creates a space-occupying hematoma that contributes toward neurological deterioration and high patient morbidity and mortality. Numerous protocols have explored a role for surgical decompression of ICH via craniotomy, stereotactic guided endoscopy, and minimally invasive catheter/tube evacuation. Studies including, but not limited to, STICH, STICH-II, MISTIE, MISTIE-II, MISTIE-III, ENRICH, and ICES have all shown that, in certain limited patient populations, evacuation can be done safely and mortality can be decreased, but functional outcomes remain statistically no different compared to medical management alone. Only 10-15% of patients with ICH are surgical candidates based on clot location, medical comorbidities, and limitations regarding early surgical intervention. To date, no clearly effective treatment options are available to improve ICH outcomes, leaving medical and supportive management as the standard of care. We recently identified that remote ischemic conditioning (RIC), the non-invasive, repetitive inflation-deflation of a blood pressure cuff on a limb, non-invasively enhanced hematoma resolution and improved neurological outcomes via anti-inflammatory macrophage polarization in pre-clinical ICH models. Herein, we propose a pilot, placebo-controlled, open-label, randomized trial to test the hypothesis that RIC accelerates hematoma resorption and improves outcomes in ICH patients. Twenty ICH patients will be randomized to receive either mock conditioning or unilateral arm RIC (4 cycles × 5 min inflation/5 min deflation per cycle) beginning within 48 h of stroke onset and continuing twice daily for one week. All patients will receive standard medical care according to latest guidelines. The primary outcome will be the safety evaluation of unilateral RIC in ICH patients. Secondary outcomes will include hematoma volume/clot resorption rate and functional outcomes, as assessed by the modified Rankin Scale (mRS) at 1- and 3-months post-ICH. Additionally, blood will be collected for exploratory genomic analysis. This study will establish the feasibility and safety of RIC in acute ICH patients, providing a foundation for a larger, multi-center clinical trial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...