Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 341: 117900, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150174

RESUMO

Food waste is an attractive feedstock for Anaerobic Digestion due to its high biodegradability and moisture content. Nevertheless, due to its complex structure and composition, methane yield is typically compromised with 50-60% of the theoretical maximum obtained. The well-known limitation of the hydrolysis step can be circumvented by adopting feedstock pre-treatments, such as microwave irradiation. It improves solubilization of various FW components making them more readily available for the microorganisms and reducing AD process duration. In this work different heating rates (7.8, 3.9 and 1.9 °C/min) and temperatures (85, 115, 145, 175 °C) were applied when pre-treating food waste as a substrate for AD. Increase in the solubilization of organic matter in the form of Soluble Chemical Oxygen Demand was the most significative change in FW characteristics after pre-treatment, with final temperature of 175 °C and heating rate of 3.9 °C showing a 73.19% increment. Nevertheless, process performance of AD of MW FW was optimum at 85 °C 7.8 ramp, showing no intermediate products accumulation, up to 77% more methane produced in the first week of digestion compared to the other conditions tested and reduction of 96.36% on the lag phase duration, compared to the control. On the other hand, samples treated at 175 °C, regardless of heating rate, consistently showed poor process performance, with low methane yield, possibly due to the formation of hard-to-digest compounds. This work underlines the importance of adjusting microwave temperature and power when pre-treating FW for biomethane production so the process is optimized.


Assuntos
Eliminação de Resíduos , Temperatura , Anaerobiose , Micro-Ondas , Alimentos , Esgotos/química , Metano , Reatores Biológicos
3.
J Environ Sci (China) ; 96: 151-162, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32819689

RESUMO

Within the drinking water distribution system (DWDS) using chloramine as disinfectant, nitrification caused by nitrifying bacteria is increasingly becoming a concern as it poses a great challenge for maintaining water quality. To investigate efficient control strategies, operational conditions including hydraulic regimes and disinfectant scenarios were controlled within a flow cell experimental facility. Two test phases were conducted to investigate the effects on the extent of nitrification of three flow rates (Q = 2, 6, and 10 L/min) and four disinfection scenarios (total Cl2=1 mg/L, Cl2/NH3-N=3:1; total Cl2=1 mg/L, Cl2/NH3-N=5:1; total Cl2=5 mg/L, Cl2/NH3-N=3:1; and total Cl2=5 mg/L, Cl2/NH3-N=5:1). Physico-chemical parameters and nitrification indicators were monitored during the tests. The characteristics of biofilm extracellular polymetric substance (EPS) were evaluated after the experiment. The main results from the study indicate that nitrification is affected by hydraulic conditions and the process tends to be severe when the fluid flow transforms from laminar to turbulent (2300

Assuntos
Desinfetantes , Água Potável , Biofilmes , Desinfecção , Nitrificação
4.
Environ Technol ; 41(28): 3732-3744, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31120377

RESUMO

The aim of this study was to investigate the combined impact of flow hydrodynamics and pipe material on biofilm development in drinking water distribution systems (DWDS). Biofilms were formed on four commonly used pipe materials (namely polyvinyl chloride, polypropylene, structured wall high-density polyethylene and solid wall high-density polyethylene) within a series of purpose built flow cell reactors at two different flow regimes. Results indicate that varying amounts of microbial material with different morphologies were present depending on the pipe material and conditioning. The amount of microbial biomass was typically greater for the biofilms conditioned at lower flows. Whereas, biofilm development was inhibited at higher flows indicating shear forces imposed by flow conditions were above the critical levels for biofilm attachment. Alphaproteobacteria was the predominant bacterial group within the biofilms incubated at low flow and represented 48% of evaluated phylotypes; whilst at higher flows, Betaproteobacteria (45%) and Gammaproteobacteria (33%) were the dominant groups. The opportunistic pathogens, Sphingomonas and Pseudomonas were found to be particularly abundant in biofilms incubated at lower flows, and only found within biofilms incubated at higher flows on the rougher materials assessed. This suggests that these bacteria have limited ability to propagate within biofilms under high shear conditions without sufficient protection (roughness). These findings expand on knowledge relating to the impact of surface roughness and flow hydrodynamics on biofilm development within DWDS.


Assuntos
Água Potável , Bactérias , Biofilmes , Hidrodinâmica , Microbiologia da Água , Abastecimento de Água
5.
Int J Environ Res Public Health ; 13(4): 375, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27043584

RESUMO

This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, -550 ± 10 mV and 50 mL/min respectively, for COD, pH(cathode), ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m² power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value.


Assuntos
Fontes de Energia Bioelétrica , Fósforo/análise , Cloreto de Amônio/química , Análise da Demanda Biológica de Oxigênio , Eletrodos , Cloreto de Magnésio/química , Compostos de Magnésio/química , Fosfatos/química , Fósforo/química , Estruvita , Eliminação de Resíduos Líquidos , Águas Residuárias
6.
Water Sci Technol ; 71(12): 1775-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26067496

RESUMO

Globally, alum sludge is an easily, locally and largely available by-product from water treatment plants where aluminium sulphate is used as the coagulant for raw water purification. Owing to the high content of Al ions (29.7±13.3% dry weight) in alum sludge and the strong affinity of Al ions to adsorb various pollutants especially phosphorus (P), alum sludge (in the form of dewatered cakes) has been investigated in recent years as a low-cost alternative substrate in constructed wetland (CW) systems to enhance the treatment efficiency especially for high strength P-containing wastewater. Long-term trials in different scales have demonstrated that the alum sludge-based CW is a promising technique with a two-pronged feature of using 'waste' for wastewater treatment. Alum sludge cakes in CW can serve as a medium for wetland plant growth, as a carrier for biofilm development and as a porous material for wastewater infiltration. After the intensive studies of the alum sludge-based CW system, this paper aims to address the key issues and concerns pertaining to this kind of CW system. These include: (1) Is alum sludge suitable for reuse in CWs? (2) Is Al released from the sludge a concern? (3) What is the lifespan of the alum sludge in CWs? (4) How can P be recovered from the used alum sludge? (5) Does clogging happen in alum sludge-based CW systems and what is the solution?


Assuntos
Compostos de Alúmen/química , Esgotos/química , Áreas Alagadas , Adsorção , Alumínio/química , Fósforo/química , Reciclagem , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos
8.
J Environ Monit ; 13(6): 1775-83, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21547295

RESUMO

This study investigated an important issue of aluminium (Al) release from a novel reuse of Al-based water treatment sludge (Al-WTS) in constructed wetland system (CWs) as alternative substrate for wastewater treatment. Al-WTS is an inevitable by-product of drinking water treatment plants that use Al-salt as coagulant for raw water purification. It has recently been demonstrated that Al-WTS can be reused as a low-cost phosphorus (P) adsorbent and biofilm carrier in CWs for wastewater treatment. However, to facilitate the large scale application of Al-WTS in CWs as wetland substrate, concerns about Al leaching during its reuse in CWs must be addressed as Al is a dominant constituent in Al-WTS. In this study, a desk review of literature on Al release during Al-WTS reuse was conducted. Furthermore, a 42-week Al monitoring was carried out on a pilot field-scale CWs employing Al-WTS as main substrate. Results show that 22 out of the 35 studies reviewed, reported Al release with levels of soluble Al reported ranging from 0.01 to about 20 mg L(-1). Monitoring of Al in the pilot field-scale CWs shows that there was Al leaching. However, except for the first three weeks of operation, effluents concentrations of both total- and soluble-Al were all below the general regulatory guideline limit of 0.2 mg L(-1). Overall, the study addresses a vital concern regarding the successful application of Al-WTS in CWs and shows that Al release during such novel reuse is quite low and should not preclude its use.


Assuntos
Alumínio/análise , Recuperação e Remediação Ambiental/métodos , Fósforo/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Alumínio/química , Fósforo/análise , Medição de Risco , Esgotos/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...