Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 25(11): 1163-72, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24112361

RESUMO

Oestrogen rapidly enhances fast excitatory postsynaptic potentials, facilitates long-term potentiation (LTP) and increases spine numbers. Each effect likely contributes to the influence of the steroid on cognition and memory. In the present review, we first describe a model for the substrates of LTP that includes an outline of the synaptic events occurring during induction, expression and consolidation. Briefly, critical signalling pathways involving the small GTPases RhoA and Rac/Cdc42 are activated by theta burst-induced calcium influx and initiate actin filament assembly via phosphorylation (inactivation) of cofilin. Reorganisation of the actin cytoskeleton changes spine and synapse morphology, resulting in increased concentrations of AMPA receptors at stimulated contacts. We then use the synaptic model to develop a specific hypothesis about how oestrogen affects both baseline transmission and plasticity. Brief infusions of 17ß-oestradiol (E2 ) reversibly stimulate the RhoA, cofilin phosphorylation and actin polymerisation cascade of the LTP machinery; blocking this eliminates the effects of the steroid on transmission. We accordingly propose that E2 induces a weak form of LTP and thereby increases synaptic responses, a hypothesis that also accounts for how it markedly enhances theta burst induced potentiation. Although the effects of E2 on the cytoskeleton could be a result of the direct activation of small GTPases by oestrogen receptors on the synaptic membrane, the hormone also activates tropomyosin-related kinase B receptors for brain-derived neurotrophic factor, a neurotrophin that engages the RhoA-cofilin sequence and promotes LTP. The latter observations raise the possibility that E2 produces its effects on synaptic physiology via transactivation of neighbouring receptors that have prominent roles in the management of spine actin, synaptic physiology and plasticity.


Assuntos
Actinas/metabolismo , Estrogênios/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Animais
2.
Mol Psychiatry ; 18(4): 485-96, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22411227

RESUMO

Stress is ubiquitous in modern life and exerts profound effects on cognitive and emotional functions. Thus, whereas acute stress enhances memory, longer episodes exert negative effects through as yet unresolved mechanisms. We report a novel, hippocampus-intrinsic mechanism for the selective memory defects that are provoked by stress. CRH (corticotropin-releasing hormone), a peptide released from hippocampal neurons during stress, depressed synaptic transmission, blocked activity-induced polymerization of spine actin and impaired synaptic plasticity in adult hippocampal slices. Live, multiphoton imaging demonstrated a selective vulnerability of thin dendritic spines to this stress hormone, resulting in depletion of small, potentiation-ready excitatory synapses. The underlying molecular mechanisms required activation and signaling of the actin-regulating small GTPase, RhoA. These results implicate the selective loss of dendritic spine sub-populations as a novel structural and functional foundation for the clinically important effects of stress on cognitive and emotional processes.


Assuntos
Hormônio Liberador da Corticotropina/fisiologia , Espinhas Dendríticas/ultraestrutura , Plasticidade Neuronal/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Actinas/metabolismo , Animais , Hormônio Liberador da Corticotropina/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sinapses/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo
3.
Neuroscience ; 239: 3-16, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23103216

RESUMO

Estrogen's acute, facilitatory effects on glutamatergic transmission and long-term potentiation (LTP) provide a potential explanation for the steroid's considerable influence on behavior. Recent work has identified mechanisms underlying these synaptic actions. Brief infusion of 17ß-estradiol (E2) into adult male rat hippocampal slices triggers actin polymerization within dendritic spines via a signaling cascade beginning with the GTPase RhoA and ending with inactivation of the filament-severing protein cofilin. Blocking this sequence, or actin polymerization itself, eliminates E2's effects on synaptic physiology. Notably, the theta burst stimulation used to induce LTP activates the same signaling pathway as E2 plus events that stabilize the reorganization of the sub-synaptic cytoskeleton. These observations suggest that E2 elicits a partial form of LTP, resulting in an increase of fast excitatory postsynaptic potentials (EPSPs) and a reduction in the threshold for lasting synaptic changes. While E2's effects on the cytoskeleton could be direct, results described here indicate that the hormone activates synaptic tropomyosin-related kinase B (TrkB) receptors for brain-derived neurotrophic factor (BDNF), a releasable neurotrophin that stimulates the RhoA to cofilin pathway. It is therefore possible that E2 acts via transactivation of neighboring receptors to modify the composition and structure of excitatory contacts. Finally, there is the question of whether a loss of acute synaptic actions contributes to the memory problems associated with estrogen depletion. Initial tests found that ovariectomy in middle-aged rats disrupts RhoA signaling, actin polymerization, and LTP consolidation. Acute applications of E2 reversed these defects, a result consistent with the idea that disturbances to actin management are one cause of behavioral effects that emerge with reductions in steroid levels.


Assuntos
Citoesqueleto/metabolismo , Estrogênios/metabolismo , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Humanos
4.
Neuroscience ; 226: 441-50, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22999972

RESUMO

The Reelin-signaling pathway regulates neuronal positioning during embryonic development. Reelin, the extracellular matrix protein missing in reeler mutants, is secreted by neurons in laminae I, II and V, binds to Vldl and Apoer2 receptors on nearby neurons, and tyrosine phosphorylates the adaptor protein Disabled-1 (Dab1), which activates downstream signaling. We previously reported that reeler and dab1 mutants had significantly reduced mechanical and increased heat nociception. Here we extend our analysis to chemical, visceral, and cold pain and importantly, used Fos expression to relate positioning errors in mutant mouse dorsal horn to changes in neuronal activity. We found that noxious mechanical stimulation-induced Fos expression is reduced in reeler and dab1 laminae I-II, compared to wild-type mice. Additionally, mutants had fewer Fos-immunoreactive neurons in the lateral-reticulated area of the deep dorsal horn than wild-type mice, a finding that correlates with a 50% reduction and subsequent mispositioning of the large Dab1-positive cells in the mutant lateral-reticulated area. Furthermore, several of these Dab1 cells expressed Fos in wild-type mice but rarely in reeler mutants. By contrast, paralleling the behavioral observations, noxious heat stimulation evoked significantly greater Fos expression in laminae I-II of reeler and dab1 mutants. We then used the formalin test to show that chemical nociception is reduced in reeler and dab1 mutants and that there is a corresponding decrease in formalin-induced Fos expression. Finally, neither visceral pain nor cold-pain sensitivity differed between wild-type and mutant mice. As differences in the nociceptor distribution within reeler and dab1 mutant dorsal horn were not detected, these differential effects observed on distinct pain modalities suggest that dorsal horn circuits are organized along modality-specific lines.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Nociceptividade/fisiologia , Serina Endopeptidases/fisiologia , Transdução de Sinais/fisiologia , Sensação Térmica/fisiologia , Percepção do Tato/fisiologia , Animais , Mapeamento Encefálico , Moléculas de Adesão Celular Neuronais/genética , Células Quimiorreceptoras/fisiologia , Temperatura Baixa , Proteínas da Matriz Extracelular/genética , Formaldeído , Expressão Gênica/fisiologia , Genes fos/genética , Temperatura Alta , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Nociceptores/fisiologia , Medição da Dor/efeitos dos fármacos , Estimulação Física , Proteína Reelina , Serina Endopeptidases/genética , Transdução de Sinais/genética , Sensação Térmica/genética , Percepção do Tato/genética
5.
Neuroscience ; 139(4): 1385-96, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16580148

RESUMO

Mutations in reeler, the gene coding for the Reelin protein, result in pronounced motor deficits associated with positioning errors (i.e. ectopic locations) in the cerebral and cerebellar cortices. In this study we provide the first evidence that the reeler mutant also has profound sensory defects. We focused on the dorsal horn of the spinal cord, which receives inputs from small diameter primary afferents and processes information about noxious, painful stimulation. We used immunocytochemistry to map the distribution of Reelin and Disabled-1 (the protein product of the reeler gene, and the intracellular adaptor protein, Dab1, involved in its signaling pathway) in adjacent regions of the developing dorsal horn, from early to late embryonic development. As high levels of Dab1 accumulate in cells that sustain positioning errors in reeler mutants, our findings of increased Dab1 immunoreactivity in reeler laminae I-III, lamina V and the lateral spinal nucleus suggest that there are incorrectly located neurons in the reeler dorsal horn. Subsequently, we identified an aberrant neuronal compaction in reeler lamina I and a reduction of neurons in the lateral spinal nucleus throughout the spinal cord. Additionally, we detected neurokinin-1 receptors expressed by Dab1-labeled neurons in reeler laminae I-III and the lateral spinal nucleus. Consistent with these anatomical abnormalities having functional consequences, we found a significant reduction in mechanical sensitivity and a pronounced thermal hyperalgesia (increased pain sensitivity) in reeler compared with control mice. As the nociceptors in control and reeler dorsal root ganglia are similar, our results indicate that Reelin signaling is an essential contributor to the normal development of central circuits that underlie nociceptive processing and pain.


Assuntos
Moléculas de Adesão Celular Neuronais/deficiência , Proteínas da Matriz Extracelular/deficiência , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas do Tecido Nervoso/deficiência , Células do Corno Posterior/fisiologia , Receptores Opioides/fisiologia , Serina Endopeptidases/deficiência , Medula Espinal/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Comportamento Animal , Contagem de Células/métodos , Embrião de Mamíferos , Humanos , Imuno-Histoquímica/métodos , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/metabolismo , Medição da Dor/métodos , Receptores da Neurocinina-1/metabolismo , Proteína Reelina , Fatores Sexuais , Medula Espinal/enzimologia , Medula Espinal/crescimento & desenvolvimento , Receptor de Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA