Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 74(12): 3630-3650, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37010230

RESUMO

EARLY FLOWERING 3 (ELF3) is an important regulator of various physiological and developmental processes and hence may serve to improve plant adaptation which will be essential for future plant breeding. To expand the limited knowledge on barley ELF3 in determining agronomic traits, we conducted field studies with heterogeneous inbred families (HIFs) derived from selected lines of the wild barley nested association mapping population HEB-25. During two growing seasons, phenotypes of nearly isogenic HIF sister lines, segregating for exotic and cultivated alleles at the ELF3 locus, were compared for 10 developmental and yield-related traits. We determine novel exotic ELF3 alleles and show that HIF lines, carrying the exotic ELF3 allele, accelerated plant development compared with the cultivated ELF3 allele, depending on the genetic background. Remarkably, the most extreme effects on phenology could be attributed to one exotic ELF3 allele differing from the cultivated Barke ELF3 allele in only one single nucleotide polymorphism (SNP). This SNP causes an amino acid substitution (W669G), which as predicted has an impact on the protein structure of ELF3. Consequently, it may affect phase separation behaviour and nano-compartment formation of ELF3 and, potentially, also its local cellular interactions causing significant trait differences between HIF sister lines.


Assuntos
Hordeum , Locos de Características Quantitativas , Mapeamento Cromossômico , Hordeum/genética , Alelos , Melhoramento Vegetal , Desenvolvimento Vegetal
2.
EMBO J ; 42(11): e111926, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071525

RESUMO

Roots are highly plastic organs enabling plants to adapt to a changing below-ground environment. In addition to abiotic factors like nutrients or mechanical resistance, plant roots also respond to temperature variation. Below the heat stress threshold, Arabidopsis thaliana seedlings react to elevated temperature by promoting primary root growth, possibly to reach deeper soil regions with potentially better water saturation. While above-ground thermomorphogenesis is enabled by thermo-sensitive cell elongation, it was unknown how temperature modulates root growth. We here show that roots are able to sense and respond to elevated temperature independently of shoot-derived signals. This response is mediated by a yet unknown root thermosensor that employs auxin as a messenger to relay temperature signals to the cell cycle. Growth promotion is achieved primarily by increasing cell division rates in the root apical meristem, depending on de novo local auxin biosynthesis and temperature-sensitive organization of the polar auxin transport system. Hence, the primary cellular target of elevated ambient temperature differs fundamentally between root and shoot tissues, while the messenger auxin remains the same.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas
3.
J Exp Bot ; 74(9): 2912-2931, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36449391

RESUMO

Increase in ambient temperatures caused by climate change affects various morphological and developmental traits of plants, threatening crop yield stability. In the model plant Arabidopsis thaliana, EARLY FLOWERING 3 (ELF3) plays prominent roles in temperature sensing and thermomorphogenesis signal transduction. However, how crop species respond to elevated temperatures is poorly understood. Here, we show that the barley ortholog of AtELF3 interacts with high temperature to control growth and development. We used heterogeneous inbred family (HIF) pairs generated from a segregating mapping population and systematically studied the role of exotic ELF3 variants in barley temperature responses. An exotic ELF3 allele of Syrian origin promoted elongation growth in barley at elevated temperatures, whereas plant area and estimated biomass were drastically reduced, resulting in an open canopy architecture. The same allele accelerated inflorescence development at high temperature, which correlated with early transcriptional induction of MADS-box floral identity genes BM3 and BM8. Consequently, barley plants carrying the exotic ELF3 allele displayed stable total grain number at elevated temperatures. Our findings therefore demonstrate that exotic ELF3 variants can contribute to phenotypic and developmental acclimation to elevated temperatures, providing a stimulus for breeding of climate-resilient crops.


Assuntos
Arabidopsis , Hordeum , Temperatura , Alelos , Melhoramento Vegetal , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Flores/genética
4.
Sci Rep ; 12(1): 5275, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347161

RESUMO

Winter wheat growing areas in the Northern hemisphere are regularly exposed to heavy frost. Due to the negative impact on yield, the identification of genetic factors controlling frost tolerance (FroT) and development of tools for breeding is of prime importance. Here, we detected QTL associated with FroT by genome wide association studies (GWAS) using a diverse panel of 276 winter wheat genotypes that was phenotyped at five locations in Germany and Russia in three years. The panel was genotyped using the 90 K iSelect array and SNPs in FroT candidate genes. In total, 17,566 SNPs were used for GWAS resulting in the identification of 53 markers significantly associated (LOD ≥ 4) to FroT, corresponding to 23 QTL regions located on 11 chromosomes (1A, 1B, 2A, 2B, 2D, 3A, 3D, 4A, 5A, 5B and 7D). The strongest QTL effect confirmed the importance of chromosome 5A for FroT. In addition, to our best knowledge, eight FroT QTLs were discovered for the first time in this study comprising one QTL on chromosomes 3A, 3D, 4A, 7D and two on chromosomes 1B and 2D. Identification of novel FroT candidate genes will help to better understand the FroT mechanism in wheat and to develop more effective combating strategies.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/genética
5.
Curr Biol ; 29(24): R1326-R1338, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31846685

RESUMO

Global warming is one of the most detrimental aspects of climate change, affecting plant growth and development across the entire life cycle. This Review explores how different stages of development are influenced by elevated temperature in both wild plants and crops. Starting from seed development and germination, global warming will influence morphological adjustments, termed thermomorphogenesis, and photosynthesis primarily during the vegetative phase, as well as flowering and reproductive development. Where applicable, we distinguish between moderately elevated temperatures that affect all stages of plant development and heat waves that often occur during the reproductive phase when they can have devastating consequences for fruit development. The parallel occurrence of elevated temperature with other abiotic and biotic stressors, particularly the combination of global warming and drought or increased pathogen pressure, will potentiate the challenges for both wild and cultivated plant species. The key components of the molecular networks underlying the physiological processes involved in thermal responses in the model plant Arabidopsis thaliana are highlighted. In crops, temperature-sensitive traits relevant for yield are illustrated for winter wheat (Triticum aestivum L.) and soybean (Glycine max L.), representing cultivated species adapted to temperate vs. warm climate zones, respectively. While the fate of wild plants depends on political agendas, plant breeding approaches informed by mechanistic understanding originating in basic science can enable the generation of climate change-resilient crops.


Assuntos
Agricultura/métodos , Agricultura/tendências , Mudança Climática/economia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Secas , Germinação/genética , Aquecimento Global/economia , Aquecimento Global/estatística & dados numéricos , Desenvolvimento Vegetal/genética , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Temperatura , Triticum/crescimento & desenvolvimento
6.
BMC Genomics ; 19(1): 409, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843596

RESUMO

BACKGROUND: Understanding the genetic basis of frost tolerance (FT) in wheat (Triticum aestivum L.) is essential for preventing yield losses caused by frost due to cellular damage, dehydration and reduced metabolism. FT is a complex trait regulated by a number of genes and several gene families. Availability of the wheat genomic sequence opens new opportunities for exploring candidate genes diversity for FT. Therefore, the objectives of this study were to identity SNPs and insertion-deletion (indels) in genes known to be involved in frost tolerance and to perform association genetics analysis of respective SNPs and indels on FT. RESULTS: Here we report on the sequence analysis of 19 candidate genes for FT in wheat assembled using the Chinese Spring IWGSC RefSeq v1.0. Out of these, the tandem duplicated C-repeat binding factors (CBF), i.e. CBF-A3, CBF-A5, CBF-A10, CBF-A13, CBF-A14, CBF-A15, CBF-A18, the vernalisation response gene VRN-A1, VRN-B3, the photoperiod response genes PPD-B1 and PPD-D1 revealed association to FT in 235 wheat cultivars. Within six genes (CBF-A3, CBF-A15, VRN-A1, VRN-B3, PPD-B1 and PPD-D1) amino acid (AA) substitutions in important protein domains were identified. The amino acid substitution effect in VRN-A1 on FT was confirmed and new AA substitutions in CBF-A3, CBF-A15, VRN-B3, PPD-B1 and PPD-D1 located at highly conserved sites were detected. Since these results rely on phenotypic data obtained at five locations in 2 years, detection of significant associations of FT to AA changes in CBF-A3, CBF-A15, VRN-A1, VRN-B3, PPD-B1 and PPD-D1 may be exploited in marker assisted breeding for frost tolerance in winter wheat. CONCLUSIONS: A set of 65 primer pairs for the genes mentioned above from a previous study was BLASTed against the IWGSC RefSeq resulting in the identification of 39 primer combinations covering the full length of 19 genes. This work demonstrates the usefulness of the IWGSC RefSeq in specific primer development for highly conserved gene families in hexaploid wheat and, that a candidate gene association genetics approach based on the sequence data is an efficient tool to identify new alleles of genes important for the response to abiotic stress in wheat.


Assuntos
Substituição de Aminoácidos , Sequência Conservada , Proteínas de Plantas/genética , Triticum/genética , Temperatura Baixa , Haplótipos , Mutação INDEL , Desequilíbrio de Ligação , Fenótipo , Proteínas de Plantas/química , Polimorfismo de Nucleotídeo Único , Triticum/fisiologia
7.
PLoS One ; 10(11): e0142746, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26565976

RESUMO

Recent declines in costs accelerated sequencing of many species with large genomes, including hexaploid wheat (Triticum aestivum L.). Although the draft sequence of bread wheat is known, it is still one of the major challenges to developlocus specific primers suitable to be used in marker assisted selection procedures, due to the high homology of the three genomes. In this study we describe an efficient approach for the development of locus specific primers comprising four steps, i.e. (i) identification of genomic and coding sequences (CDS) of candidate genes, (ii) intron- and exon-structure reconstruction, (iii) identification of wheat A, B and D sub-genome sequences and primer development based on sequence differences between the three sub-genomes, and (iv); testing of primers for functionality, correct size and localisation. This approach was applied to single, low and high copy genes involved in frost tolerance in wheat. In summary for 27 of these genes for which sequences were derived from Triticum aestivum, Triticum monococcum and Hordeum vulgare, a set of 119 primer pairs was developed and after testing on Nulli-tetrasomic (NT) lines, a set of 65 primer pairs (54.6%), corresponding to 19 candidate genes, turned out to be specific. Out of these a set of 35 fragments was selected for validation via Sanger's amplicon re-sequencing. All fragments, with the exception of one, could be assigned to the original reference sequence. The approach presented here showed a much higher specificity in primer development in comparison to techniques used so far in bread wheat and can be applied to other polyploid species with a known draft sequence.


Assuntos
Adaptação Biológica/genética , Primers do DNA/genética , Triticum/genética , Cromossomos de Plantas , Temperatura Baixa , Biologia Computacional , Éxons , Deleção de Genes , Técnicas Genéticas , Genoma de Planta , Hordeum/genética , Íntrons , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
8.
Sci Rep ; 4: 5231, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912875

RESUMO

The need for higher yielding and better-adapted crop plants for feeding the world's rapidly growing population has raised the question of how to systematically utilize large genebank collections with their wide range of largely untouched genetic diversity. Phenotypic data that has been recorded for decades during various rounds of seed multiplication provides a rich source of information. Their usefulness has remained limited though, due to various biases induced by conservation management over time or changing environmental conditions. Here, we present a powerful procedure that permits an unbiased trait-based selection of plant samples based on such phenotypic data. Applying this technique to the wheat collection of one of the largest genebanks worldwide, we identified groups of plant samples displaying contrasting phenotypes for selected traits. As a proof of concept for our discovery pipeline, we resequenced the entire major but conserved flowering time locus Ppd-D1 in just a few such selected wheat samples - and nearly doubled the number of hitherto known alleles.


Assuntos
Genes de Plantas/genética , Triticum/genética , Alelos , Variação Genética/genética , Dados de Sequência Molecular , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...