Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38675106

RESUMO

There is an increasing accumulation of data on the exceptional importance of mitochondria in the occurrence and treatment of cancer, and in all lines of evidence for such participation, there are both energetic and non-bioenergetic functional features of mitochondria. This analytical review examines three specific features of adaptive mitochondrial changes in several malignant tumors. The first feature is characteristic of solid tumors, whose cells are forced to rebuild their energetics due to the absence of oxygen, namely, to activate the fumarate reductase pathway instead of the traditional succinate oxidase pathway that exists in aerobic conditions. For such a restructuring, the presence of a low-potential quinone is necessary, which cannot ensure the conventional conversion of succinate into fumarate but rather enables the reverse reaction, that is, the conversion of fumarate into succinate. In this scenario, complex I becomes the only generator of energy in mitochondria. The second feature is the increased proliferation in aggressive tumors of the so-called mitochondrial (peripheral) benzodiazepine receptor, also called translocator protein (TSPO) residing in the outer mitochondrial membrane, the function of which in oncogenic transformation stays mysterious. The third feature of tumor cells is the enhanced retention of certain molecules, in particular mitochondrially directed cations similar to rhodamine 123, which allows for the selective accumulation of anticancer drugs in mitochondria. These three features of mitochondria can be targets for the development of an anti-cancer strategy.

2.
Biochemistry (Mosc) ; 89(2): 223-240, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622092

RESUMO

Worldwide, interest in mitochondria is constantly growing, as evidenced by scientific statistics, and studies of the functioning of these organelles are becoming more prevalent than studies of other cellular structures. In this analytical review, mitochondria are conditionally placed in a certain cellular center, which is responsible for both energy production and other non-energetic functions, without which the existence of not only the eukaryotic cell itself, but also the entire organism is impossible. Taking into account the high multifunctionality of mitochondria, such a fundamentally new scheme of cell functioning organization, including mitochondrial management of processes that determine cell survival and death, may be justified. Considering that this issue is dedicated to the memory of V. P. Skulachev, who can be called mitocentric, due to the history of his scientific activity almost entirely aimed at studying mitochondria, this work examines those aspects of mitochondrial functioning that were directly or indirectly the focus of attention of this outstanding scientist. We list all possible known mitochondrial functions, including membrane potential generation, synthesis of Fe-S clusters, steroid hormones, heme, fatty acids, and CO2. Special attention is paid to the participation of mitochondria in the formation and transport of water, as a powerful biochemical cellular and mitochondrial regulator. The history of research on reactive oxygen species that generate mitochondria is subject to significant analysis. In the section "Mitochondria in the center of death", special emphasis is placed on the analysis of what role and how mitochondria can play and determine the program of death of an organism (phenoptosis) and the contribution made to these studies by V. P. Skulachev.


Assuntos
Mitocôndrias , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Heliyon ; 10(5): e26656, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434323

RESUMO

Pathogenic variants in the GNAO1 gene, encoding the alpha subunit of an inhibitory heterotrimeric guanine nucleotide-binding protein (Go) highly expressed in the mammalian brain, have been linked to encephalopathy characterized by different combinations of neurological symptoms, including developmental delay, hypotonia, epilepsy and hyperkinetic movement disorder with life-threatening paroxysmal exacerbations. Currently, there are only symptomatic treatments, and little is known about the pathophysiology of GNAO1-related disorders. Here, we report the characterization of a new in vitro model system based on patient-derived induced pluripotent stem cells (hiPSCs) carrying the recurrent p.G203R amino acid substitution in Gαo, and a CRISPR-Cas9-genetically corrected isogenic control line. RNA-Seq analysis highlighted aberrant cell fate commitment in neuronal progenitor cells carrying the p.G203R pathogenic variant. Upon differentiation into cortical neurons, patients' cells showed reduced expression of early neural genes and increased expression of astrocyte markers, as well as premature and defective differentiation processes leading to aberrant formation of neuronal rosettes. Of note, comparable defects in gene expression and in the morphology of neural rosettes were observed in hiPSCs from an unrelated individual harboring the same GNAO1 variant. Functional characterization showed lower basal intracellular free calcium concentration ([Ca2+]i), reduced frequency of spontaneous activity, and a smaller response to several neurotransmitters in 40- and 50-days differentiated p.G203R neurons compared to control cells. These findings suggest that the GNAO1 pathogenic variant causes a neurodevelopmental phenotype characterized by aberrant differentiation of both neuronal and glial populations leading to a significant alteration of neuronal communication and signal transduction.

4.
FEBS J ; 291(8): 1684-1698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38226425

RESUMO

Lactate is now considered an additional fuel or signaling molecule in the brain. In this study, using an oxygen-glucose deprivation (OGD) model, we found that treatment with lactate inhibited the global increase in intracellular calcium ion concentration ([Ca2+]) in neurons and astrocytes, decreased the percentage of dying cells, and caused a metabolic shift in astrocytes and neurons toward aerobic oxidation of substrates. OGD resulted in proinflammatory changes and increased expression of cytokines and chemokines, whereas incubation with lactate reduced these changes. Pure astrocyte cultures were less sensitive than neuroglia cultures during OGD. Astrocytes exposed to lipopolysaccharide (LPS) also showed pro-inflammatory changes that were reduced by incubation with lactate. Our study suggests that lactate may have neuroprotective effects under ischemic and inflammatory conditions.


Assuntos
Ácido Láctico , Fármacos Neuroprotetores , Ratos , Animais , Ácido Láctico/metabolismo , Astrócitos/metabolismo , Ratos Sprague-Dawley , Células Cultivadas , Glucose/metabolismo , Fármacos Neuroprotetores/farmacologia , Oxigênio/metabolismo , Neurônios/metabolismo , Homeostase
5.
Biochemistry (Mosc) ; 88(10): 1596-1607, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105027

RESUMO

Mitochondria in a cell can unite and organize complex, extended structures that occupy the entire cellular volume, providing an equal supply with energy in the form of ATP synthesized in mitochondria. In accordance with the chemiosmotic concept, the oxidation energy of respiratory substrates is largely stored in the form of an electrical potential difference on the inner membrane of mitochondria. The theory of the functioning of extended mitochondrial structures as intracellular electrical wires suggests that mitochondria provide the fastest delivery of electrical energy through the cellular volume, followed by the use of this energy for the synthesis of ATP, thereby accelerating the process of ATP delivery compared to the rather slow diffusion of ATP in the cell. This analytical review gives the history of the cable theory, lists unsolved critical problems, describes the restructuring of the mitochondrial network and the role of oxidative stress in this process. In addition to the already proven functioning of extended mitochondrial structures as electrical cables, a number of additional functions are proposed, in particular, the hypothesis is put forth that mitochondrial networks maintain the redox potential in the cellular volume, which may vary depending on the physiological state, as a result of changes in the three-dimensional organization of the mitochondrial network (fragmentation/fission-fusion). A number of pathologies accompanied by a violation of the redox status and the participation of mitochondria in them are considered.


Assuntos
Mitocôndrias , Estresse Oxidativo , Mitocôndrias/metabolismo , Oxirredução , Trifosfato de Adenosina/metabolismo
6.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762608

RESUMO

Most of the works aimed at studying the cytoprotective properties of nanocerium are usually focused on the mechanisms of regulation of the redox status in cells while the complex effects of nanocerium on calcium homeostasis, the expression of pro-apoptotic and protective proteins are generally overlooked. There is a problem of a strong dependence of the effects of cerium oxide nanoparticles on their size, method of preparation and origin, which significantly limits their use in medicine. In this study, using the methods of molecular biology, immunocytochemistry, fluorescence microscopy and inhibitory analysis, the cytoprotective effect of cerium oxide nanoparticles obtained by laser ablation on cultured astrocytes of the cerebral cortex under oxygen-glucose deprivation (OGD) and reoxygenation (ischemia-like conditions) are shown. The concentration effects of cerium oxide nanoparticles on ROS production by astrocytes in an acute experiment and the effects of cell pre-incubation with nanocerium on ROS production under OGD conditions were studied. The dose dependence for nanocerium protection of cortical astrocytes from a global increase in calcium ions during oxygen-glucose deprivation and cell death were demonstrated. The concentration range of cerium oxide nanoparticles at which they have a pro-oxidant effect on cells has been identified. The effect of nanocerium concentrations on astrocyte preconditioning, accompanied by increased expression of protective proteins and limited ROS production induced by oxygen-glucose deprivation, has been investigated. In particular, a correlation was found between an increase in the concentration of cytosolic calcium under the action of nanocerium and the suppression of cell death. As a result, the positive and negative effects of nanocerium under oxygen-glucose deprivation and reoxygenation in astrocytes were revealed at the molecular level. Nanocerium was found to act as a "double-edged sword" and to have a strictly defined concentration therapeutic "window".

7.
J Pers Med ; 13(7)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511788

RESUMO

Ischemic stroke is a leading cause of disability and mortality worldwide. The only approved treatment for ischemic stroke is thrombolytic therapy with tissue plasminogen activator (tPA), though this approach often leads to a severe complication: hemorrhagic transformation (HT). The pathophysiology of HT in response to tPA is complex and not fully understood. However, numerous scientific findings suggest that the enzymatic activity and expression of matrix metalloproteinases (MMPs) in brain tissue play a crucial role. In this review article, we summarize the current knowledge of the functioning of various MMPs at different stages of ischemic stroke development and their association with HT. We also discuss the mechanisms that underlie the effect of tPA on MMPs as the main cause of the adverse effects of thrombolytic therapy. Finally, we describe recent research that aimed to develop new strategies to modulate MMP activity to improve the efficacy of thrombolytic therapy. The ultimate goal is to provide more targeted and personalized treatment options for patients with ischemic stroke to minimize complications and improve clinical outcomes.

8.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36290634

RESUMO

One of the causes of death of patients infected by SARS-CoV-2 is the induced respiratory failure caused by excessive activation of the immune system, the so-called "cytokine storm", leading to damage to lung tissue. In vitro models reproducing various stages of the disease can be used to explore the pathogenetic mechanisms and therapeutic approaches to treating the consequences of a cytokine storm. We have developed an in vitro test system for simulating damage to the pulmonary epithelium as a result of the development of a hyperinflammatory reaction based on the co-cultivation of pulmonary epithelial cells (A549 cells) and human peripheral blood mononuclear cells (PBMC) primed with lipopolysaccharide (LPS). In this model, after 24 h of co-cultivation, a sharp decrease in the rate of proliferation of A549 cells associated with the intrinsic development of oxidative stress and, ultimately, with the induction of PANoptotic death were observed. There was a significant increase in the concentration of 40 cytokines/chemokines in a conditioned medium, including TNF-α, IFN-α, IL-6, and IL-1a, which corresponded to the cytokine profile in patients with severe manifestation of COVID-19. In order to verify the model, the analysis of the anti-inflammatory effects of well-known substances (dexamethasone, LPS from Rhodobacter sphaeroides (LPS-RS), polymyxin B), as well as multipotent mesenchymal stem cells (MSC) and MSC-derived extracellular vesicles (EVs) was carried out. Dexamethasone and polymyxin B restored the proliferative activity of A549 cells and reduced the concentration of proinflammatory cytokines. MSC demonstrated an ambivalent effect through stimulated production of both pro-inflammatory cytokines and growth factors that regenerate lung tissue. LPS-RS and EVs showed no significant effect. The developed test system can be used to study molecular and cellular pathological processes and to evaluate the effectiveness of various therapeutic approaches for the correction of hyperinflammatory response in COVID-19 patients.

9.
Biochemistry (Mosc) ; 87(7): 577-589, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36154879

RESUMO

Investigation of the relationship between inflammation and energy metabolism is important for understanding biology of chronic noncommunicable diseases. Use of metformin, a drug for treatment of diabetes, is considered as a promising direction for treatment of neurodegenerative diseases and other neuropathologies with an inflammatory component. Astrocytes play an important role in the regulation of energy metabolism and neuroinflammation; therefore, we studied the effect of metformin on the cellular responses of primary rat astrocytes cultured in a medium with high glucose concentration (22.5 mM, 48-h incubation). Lipopolysaccharide (LPS) was used to stimulate inflammation. The effects of metformin were assessed by monitoring changes in the expression of proinflammatory cytokines and synthesis of oxylipins, assayed with ultra-high-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). Changes at the intracellular level were assessed by analyzing phosphorylation of ERK kinase and transcription factor STAT3, as well as enzymes mediating oxylipin synthesis, cyclooxygenase 1 and 2 (COX). It was found that, independent on glucose concentration, metformin reduced the LPS-stimulated release of cytokines IL-1ß and IL-6, decreased activity of the transcription factor STAT3, ERK kinase, synthesis of the derivatives of the cyclooxygenase branch of metabolism of oxylipins and anandamide, and did not affect formation of ROS. The study of energy phenotype of the cells showed that metformin activated glycolysis and inhibited mitochondrial respiration and oxidative phosphorylation, independent on LPS stimulation and cell cultivation at high glucose concentration. Thus, it has been shown that metformin exhibits anti-inflammatory effects, and its effect on the synthesis of cytokines, prostaglandins, and other lipid mediators could determine beneficial effects of metformin in models of neuropathology.


Assuntos
Astrócitos , Metformina , Animais , Anti-Inflamatórios/farmacologia , Astrócitos/metabolismo , Células Cultivadas , Cromatografia Líquida , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Citocinas/metabolismo , Glucose/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Metformina/metabolismo , Metformina/farmacologia , Oxilipinas/farmacologia , Prostaglandinas/metabolismo , Prostaglandinas/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem
10.
Int J Biol Sci ; 18(14): 5345-5368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147480

RESUMO

Mesenchymal stromal cells (MSC) are widely recognized as potential effectors in neuroprotective therapy. The protective properties of MSC were considered to be associated with the secretion of extracellular vesicles (MSC-EV). We explored the effects of MSC-EV in vivo on models of traumatic and hypoxia-ischemia (HI) brain injury. Neuroprotective mechanisms triggered by MSC-EV were also studied in vitro using a primary neuroglial culture. Intranasal administration of MSC-EV reduced the volume of traumatic brain damage, correlating with a recovery of sensorimotor functions. Neonatal HI-induced brain damage was mitigated by the MSC-EV administration. This therapy also promoted the recovery of sensorimotor functions, implying enhanced neuroplasticity, and MSC-EV-induced growth of neurites in vitro supports this. In the in vitro ischemic model, MSC-EV prevented cell calcium (Ca2+) overload and subsequent cell death. In mixed neuroglial culture, MSC-EV induced inositol trisphosphate (IP3) receptor-related Ca2+ oscillations in astrocytes were associated with resistance to calcium overload not only in astrocytes but also in co-cultured neurons, demonstrating intercellular positive crosstalk between neural cells. This implies that phosphatidylinositol 3-Kinase/AKT signaling is one of the main pathways in MSC-EV-mediated protection of neural cells exposed to ischemic challenge. Components of this pathway were identified among the most enriched categories in the MSC-EV proteome.


Assuntos
Vesículas Extracelulares , Hipóxia-Isquemia Encefálica , Células-Tronco Mesenquimais , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Vesículas Extracelulares/metabolismo , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Recém-Nascido , Inositol/metabolismo , Isquemia/terapia , Células-Tronco Mesenquimais/metabolismo , Neuroproteção , Fosfatidilinositol 3-Quinases/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Int J Mol Sci ; 23(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35806411

RESUMO

Extracellular vesicles (EV) derived from stem cells have become an effective complement to the use in cell therapy of stem cells themselves, which has led to an explosion of research into the mechanisms of vesicle formation and their action. There is evidence demonstrating the presence of mitochondrial components in EV, but a definitive conclusion about whether EV contains fully functional mitochondria has not yet been made. In this study, two EV fractions derived from mesenchymal stromal stem cells (MSC) and separated by their size were examined. Flow cytometry revealed the presence of mitochondrial lipid components capable of interacting with mitochondrial dyes MitoTracker Green and 10-nonylacridine orange; however, the EV response to the probe for mitochondrial membrane potential was negative. Detailed analysis revealed components from all mitochondria compartments, including house-keeping mitochondria proteins and DNA as well as energy-related proteins such as membrane-localized proteins of complexes I, IV, and V, and soluble proteins from the Krebs cycle. When assessing the functional activity of mitochondria, high variability in oxygen consumption was noted, which was only partially attributed to mitochondrial respiratory activity. Our findings demonstrate that the EV contain all parts of mitochondria; however, their independent functionality inside EV has not been confirmed, which may be due either to the absence of necessary cofactors and/or the EV formation process and, probably the methodology of obtaining EV.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Vesículas Extracelulares/metabolismo , Citometria de Fluxo , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias
12.
FEBS J ; 289(18): 5697-5713, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35373508

RESUMO

Age-related impairment of coordination of the processes of maintaining mitochondrial homeostasis is associated with a decrease in the functionality of cells and leads to degenerative processes. mtDNA can be a marker of oxidative stress and tissue degeneration. However, the mechanism of accumulation of age-related damage in mtDNA remains unclear. In the present study, we analyzed the accumulation of mtDNA damage in several organs of rats during aging and the possibility of reversing these alterations by dietary restriction (DR). We showed that mtDNA of brain compartments (with the exception of the cerebellum), along with kidney mtDNA, was the most susceptible to accumulation of age-related damage, whereas liver, testis, and lung were the least susceptible organs. DR prevented age-related accumulation of mtDNA damage in the cortex and led to its decrease in the lung and testis. Changes in mtDNA copy number and expression of genes involved in the regulation of mitochondrial biogenesis and mitophagy were also tissue-specific. There was a tendency for an age-related decrease in the copy number of mtDNA in the striatum and its increase in the kidney. DR promoted an increase in the amount of mtDNA in the cerebellum and hippocampus. mtDNA damage may be associated not only with the metabolic activity of organs, but also with the lipid composition and activity of processes associated with the isoprostanes pathway of lipid peroxidation. The comparison of polyunsaturated fatty acids and oxylipin profiles in old rats showed that DR decreased the synthesis of arachidonic acid and its metabolites synthesized by the cyclooxygenase, cytochrome P450 monooxygenases and lipoxygenase metabolic pathways.


Assuntos
DNA Mitocondrial , Oxilipinas , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Ácidos Araquidônicos , Dano ao DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Isoprostanos , Lipoxigenases/genética , Lipoxigenases/metabolismo , Masculino , Estresse Oxidativo , Prostaglandina-Endoperóxido Sintases/genética , Ratos
13.
Biomedicines ; 10(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35052813

RESUMO

Photodynamic therapy (PDT) represents a powerful avenue for anticancer treatment. PDT relies on the use of photosensitizers-compounds accumulating in the tumor and converted from benign to cytotoxic upon targeted photoactivation. We here describe (3S,4S)-14-Ethyl-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid (ETPA) as a major metabolite of the North Pacific brittle stars Ophiura sarsii. As a chlorin, ETPA efficiently produces singlet oxygen upon red-light photoactivation and exerts powerful sub-micromolar phototoxicity against a panel of cancer cell lines in vitro. In a mouse model of glioblastoma, intravenous ETPA injection combined with targeted red laser irradiation induced strong necrotic ablation of the brain tumor. Along with the straightforward ETPA purification protocol and abundance of O. sarsii, these studies pave the way for the development of ETPA as a novel natural product-based photodynamic therapeutic.

14.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008907

RESUMO

The mitochondrial membrane potential (∆Ψ) is the driving force providing the electrical component of the total transmembrane potential of hydrogen ions generated by proton pumps, which is utilized by the ATP synthase. The role of ∆Ψ is not limited to its role in bioenergetics since it takes part in other important intracellular processes, which leads to the mandatory requirement of the homeostasis of ∆Ψ. Conventionally, ∆Ψ in living cells is estimated by the fluorescence of probes such as rhodamine 123, tetramethylrodamine, etc. However, when assessing the fluorescence, the possibility of the intracellular/intramitochondrial modification of the rhodamine molecule is not taken into account. Such changes were revealed in this work, in which a comparison of normal (astrocytic) and tumor (glioma) cells was conducted. Fluorescent microscopy, flow cytometry, and mass spectrometry revealed significant modifications of rhodamine molecules developing over time, which were prevented by amiodarone apparently due to blocking the release of xenobiotics from the cell and their transformation with the participation of cytochrome P450. Obviously, an important role in these processes is played by the increased retention of rhodamines in tumor cells. Our data require careful evaluation of mitochondrial ∆Ψ potential based on the assessment of the fluorescence of the mitochondrial probe.


Assuntos
Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Sondas Moleculares/metabolismo , Rodamina 123/metabolismo , Animais , Astrócitos/metabolismo , Extratos Celulares , Linhagem Celular Tumoral , Fluorescência , Glioma/metabolismo , Ratos , Fatores de Tempo
15.
Biochemistry (Mosc) ; 87(12): 1487-1497, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36717442

RESUMO

In this work, we decided to initiate a discussion concerning heterogeneity of mitochondria, suggesting that it is time to build classification of mitochondria, like the one that exists for their progenitors, α-proteobacteria, proposing possible separation of mitochondrial strains and maybe species. We continue to adhere to the general line that mitochondria are friends and foes: on the one hand, they provide the cell and organism with the necessary energy and signaling molecules, and, on the other hand, participate in destruction of the cell and the organism. Current understanding that the activity of mitochondria is not only limited to energy production, but also that these alternative non-energetic functions are unique and irreplaceable in the cell, allowed us to speak about the strong subordination of the entire cellular metabolism to characteristic functional manifestations of mitochondria. Mitochondria are capable of producing not only ATP, but also iron-sulfur clusters, steroid hormones, heme, reactive oxygen and nitrogen species, participate in thermogenesis, regulate cell death, proliferation and differentiation, participate in detoxification, etc. They are a mandatory attribute of eukaryotic cells, and, so far, no eukaryotic cells performing a non-parasitic or non-symbiotic life style have been found that lack mitochondria. We believe that the structural-functional intracellular, intercellular, inter-organ, and interspecific diversity of mitochondria is large enough to provide grounds for creating a mitochondrial nomenclature. The arguments for this are given in this analytical work.


Assuntos
Células Eucarióticas , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Células Eucarióticas/metabolismo , Diferenciação Celular , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884629

RESUMO

In recent years, much attention has been paid to the study of the therapeutic effect of the microelement selenium, its compounds, especially selenium nanoparticles, with a large number of works devoted to their anticancer effects. Studies proving the neuroprotective properties of selenium nanoparticles in various neurodegenerative diseases began to appear only in the last 5 years. Nevertheless, the mechanisms of the neuroprotective action of selenium nanoparticles under conditions of ischemia and reoxygenation remain unexplored, especially for intracellular Ca2+ signaling and neuroglial interactions. This work is devoted to the study of the cytoprotective mechanisms of selenium nanoparticles in the neuroglial networks of the cerebral cortex under conditions of ischemia/reoxygenation. It was shown for the first time that selenium nanoparticles dose-dependently induce the generation of Ca2+ signals selectively in astrocytes obtained from different parts of the brain. The generation of these Ca2+ signals by astrocytes occurs through the release of Ca2+ ions from the endoplasmic reticulum through the IP3 receptor upon activation of the phosphoinositide signaling pathway. An increase in the concentration of cytosolic Ca2+ in astrocytes leads to the opening of connexin Cx43 hemichannels and the release of ATP and lactate into the extracellular medium, which trigger paracrine activation of the astrocytic network through purinergic receptors. Incubation of cerebral cortex cells with selenium nanoparticles suppresses ischemia-induced increase in cytosolic Ca2+ and necrotic cell death. Activation of A2 reactive astrocytes exclusively after ischemia/reoxygenation, a decrease in the expression level of a number of proapoptotic and proinflammatory genes, an increase in lactate release by astrocytes, and suppression of the hyperexcitation of neuronal networks formed the basis of the cytoprotective effect of selenium nanoparticles in our studies.


Assuntos
Astrócitos/citologia , Cálcio/metabolismo , Gliose/tratamento farmacológico , Nanopartículas/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Traumatismo por Reperfusão/prevenção & controle , Selênio/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Antioxidantes/química , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Astrócitos/metabolismo , Sinalização do Cálcio , Gliose/imunologia , Gliose/metabolismo , Gliose/patologia , Nanopartículas/química , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/química , Ratos , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Selênio/química
17.
Brain Sci ; 11(8)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34439669

RESUMO

There has been an explosion of interest in the use of uncouplers of oxidative phosphorylation in mitochondria in the treatment of several pathologies, including neurological ones. In this review, we analyzed all the mechanisms associated with mitochondrial uncoupling and the metabolic and signaling cascades triggered by uncouplers. We provide a full set of positive and negative effects that should be taken into account when using uncouplers in experiments and clinical practice.

18.
Cells ; 10(6)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063923

RESUMO

The use of stem cells is part of a strategy for the treatment of a large number of diseases. However, the source of the original stem cells for use is extremely important and determines their therapeutic potential. Mesenchymal stromal cells (MSC) have proven their therapeutic effectiveness when used in a number of pathological models. However, it remains an open question whether the chronological age of the donor organism affects the effectiveness of the use of MSC. The asymmetric division of stem cells, the result of which is some residential stem cells acquiring a non-senile phenotype, means that stem cells possess an intrinsic ability to preserve juvenile characteristics, implying an absence or at least remarkable retardation of senescence in stem cells. To test whether residential MSC senesce, we evaluated the physiological changes in the MSC from old rats, with a further comparison of the neuroprotective properties of MSC from young and old animals in a model of traumatic brain injury. We found that, while the effect of administration of MSC on lesion volume was minimal, functional recovery was remarkable, with the highest effect assigned to fetal cells; the lowest effect was recorded for cells isolated from adult rats and postnatal cells, having intermediate potency. MSC from the young rats were characterized by a faster growth than adult MSC, correlating with levels of proliferating cell nuclear antigen (PCNA). However, there were no differences in respiratory activity of MSC from young and old rats, but young cells showed much higher glucose utilization than old ones. Autophagy flux was almost the same in both types of cells, but there were remarkable ultrastructural differences in old and young cells.


Assuntos
Fatores Etários , Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Senescência Celular , Masculino , Ratos , Ratos Wistar
19.
Front Cell Dev Biol ; 8: 823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015039

RESUMO

The existence of niches of stem cells residence in the ventricular-subventricular zone and the subgranular zone in the adult brain is well-known. These zones are the sites of restoration of brain function after injury. Bioengineered scaffolds introduced in the damaged loci were shown to support neurogenesis to the injury area, thus representing a strategy to treat acute neurodegeneration. In this study, we explored the neuroprotective activity of the recombinant analog of Nephila clavipes spidroin 1 rS1/9 after its introduction into the ischemia-damaged brain. We used nestin-green fluorescent protein (GFP) transgenic reporter mouse line, in which neural stem/progenitor cells are easily visualized and quantified by the expression of GFP, to determine the alterations in the dentate gyrus (DG) after focal ischemia in the prefrontal cortex. Changes in the proliferation of neural stem/progenitor cells during the first weeks following photothrombosis-induced brain ischemia and in vitro effects of spidroin rS1/9 in rat primary neuronal cultures were the subject of the study. The introduction of microparticles of the recombinant protein rS1/9 into the area of ischemic damage to the prefrontal cortex leads to a higher proliferation rate and increased survival of progenitor cells in the DG of the hippocampus which functions as a niche of brain stem cells located at a distance from the injury zone. rS1/9 also increased the levels of a mitochondrial probe in DG cells, which may report on either an increased number of mitochondria and/or of the mitochondrial membrane potential in progenitor cells. Apparently, the stimulation of progenitor cells was caused by formed biologically active products stemming from rS1/9 biodegradation which can also have an effect upon the growth of primary cortical neurons, their adhesion, neurite growth, and the formation of a neuronal network. The high biological activity of rS1/9 suggests it as an excellent material for therapeutic usage aimed at enhancing brain plasticity by interacting with stem cell niches. Substances formed from rS1/9 can also be used to enhance primary neuroprotection resulting in reduced cell death in the injury area.

20.
Int J Mol Sci ; 20(24)2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31847447

RESUMO

A kidney is an organ with relatively low basal cellular regenerative potential. However, renal cells have a pronounced ability to proliferate after injury, which undermines that the kidney cells are able to regenerate under induced conditions. The majority of studies explain yielded regeneration either by the dedifferentiation of the mature tubular epithelium or by the presence of a resident pool of progenitor cells in the kidney tissue. Whether cells responsible for the regeneration of the kidney initially have progenitor properties or if they obtain a "progenitor phenotype" during dedifferentiation after an injury, still stays the open question. The major stumbling block in resolving the issue is the lack of specific methods for distinguishing between dedifferentiated cells and resident progenitor cells. Transgenic animals, single-cell transcriptomics, and other recent approaches could be powerful tools to solve this problem. This review examines the main mechanisms of kidney regeneration: dedifferentiation of epithelial cells and activation of progenitor cells with special attention to potential niches of kidney progenitor cells. We attempted to give a detailed description of the most controversial topics in this field and ways to resolve these issues.


Assuntos
Desdiferenciação Celular/fisiologia , Epitélio/fisiologia , Túbulos Renais/citologia , Regeneração/fisiologia , Células-Tronco/citologia , Animais , Células Epiteliais/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...