Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12775, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834739

RESUMO

This paper presents an innovative control scheme designed to significantly enhance the power factor of AC/DC boost rectifiers by integrating an adaptive neuro-fuzzy inference system (ANFIS) with predictive current control. The innovative control strategy addresses key challenges in power quality and energy efficiency, demonstrating exceptional performance under diverse operating conditions. Through rigorous simulation, the proposed system achieves precise input current shaping, resulting in a remarkably low total harmonic distortion (THD) of 3.5%, which is well below the IEEE-519 standard threshold of 5%. Moreover, the power factor reaches an outstanding 0.990, indicating highly efficient energy utilization and near-unity power factor operation. To validate the theoretical findings, a 500 W laboratory prototype was implemented using the dSPACE ds1104 digital controller. Steady-state analysis reveals sinusoidal input currents with minimal THD and a power factor approaching unity, thereby enhancing grid stability and energy efficiency. Transient response tests further demonstrate the system's robustness against load and voltage fluctuations, maintaining output voltage stability within an 18 V overshoot and a 20 V undershoot during load changes, and achieving rapid response times as low as 0.2 s. Comparative evaluations against conventional methods underscore the superiority of the proposed control strategy in terms of both performance and implementation simplicity. By harnessing the strengths of ANFIS-based voltage regulation and predictive current control, this scheme offers a robust solution to power quality issues in AC/DC boost rectifiers, promising substantial energy savings and improved grid stability. The results affirm the potential of the proposed system to set new benchmarks in power factor correction technology.

2.
Heliyon ; 10(6): e27792, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38560670

RESUMO

This work designs and implements a single-stage rectifier-based RF energy harvesting device. This device integrates a receiving antenna and a rectifying circuit to convert ambient electromagnetic energy into useful DC power efficiently. The rectenna is carefully engineered with an optimal matching circuit, achieving high efficiency with a return loss of less than -10 dB. The design uses a practical model of the Schottky diode, where both RF and DC characteristics are derived through extensive experimental measurements. The results from both experiments and simulations confirm the effectiveness of the design, showing its proficiency in efficient RF energy harvesting under low-power conditions. The antenna produced operates in the wifi band with a gain close to 4 dBi and a bandwidth of 100 MHz. With a load resistance of 1600 Ω, the proposed device achieves an impressive RF-to-DC conversion efficiency of approximately 52% at a low incident power of -5 dBm. These findings highlight the potential and reliability of rectenna systems for practical and efficient RF energy harvesting applications. The study significantly contributes to our understanding of rectenna-based energy harvesting, providing valuable insights for future design considerations and applications in low-power RF systems.

3.
Heliyon ; 10(5): e26337, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434315

RESUMO

In this article, we propose the design of a rectangular-shaped patch antenna suitable for ultra-wideband (UWB) applications and short and long-range Millimeter-Wave Communications. We begin with the design of a high-gain UWB rectangular patch antenna featuring a partial ground plane and operating within the 3.1-10.6 GHz bandwidth. Complementary Split Ring Resonators (CSRRs) are integrated on both sides of the structure to meet desired specifications. The resulting UWB antenna boasts an extended frequency bandwidth, covering 2.38-22.5 GHz (twice that of the original antenna), with a peak gain of 6.5 dBi and an 88% radiation efficiency. The grey wolf optimization technique (GWO) determines optimal structural dimensions. Validation of the antenna's performance is demonstrated through the strong agreement between measurement and simulation.

4.
Environ Sci Pollut Res Int ; 25(25): 24548-24560, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29022272

RESUMO

This paper discusses the use of the concept of classical and predictive direct power control for shunt active power filter function. These strategies are used to improve the active power filter performance by compensation of the reactive power and the elimination of the harmonic currents drawn by non-linear loads. A theoretical analysis followed by a simulation using MATLAB/Simulink software for the studied techniques has been established. Moreover, two test benches have been carried out using the dSPACE card 1104 for the classic and predictive DPC control to evaluate the studied methods in real time. Obtained results are presented and compared in this paper to confirm the superiority of the predictive technique. To overcome the pollution problems caused by the consumption of fossil fuels, renewable energies are the alternatives recommended to ensure green energy. In the same context, the tested predictive filter can easily be supplied by a renewable energy source that will give its impact to enhance the power quality.


Assuntos
Conservação dos Recursos Naturais/métodos , Fontes de Energia Elétrica , Melhoria de Qualidade , Poluição do Ar/prevenção & controle , Simulação por Computador , Combustíveis Fósseis , Energia Renovável , Software
5.
ISA Trans ; 53(6): 1817-21, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25249165

RESUMO

This paper proposes analysis and control of a single-phase power factor corrector (PFC). The proposed control is capable of achieving a unity power factor for each DC link voltage or load fluctuation. The method under study is composed of two intelligent approaches, a fuzzy logic controller to ensure an output voltage at a suitable value and predictive current control. The fuzzy controller is used with minimum rules to attain a low cost. The method is verified and discussed through simulation on the MATLAB/Simulink platform. It presents high dynamic performance under various parameter changes. Moreover, in order to examine and evaluate the method in real-time, a test bench is built using dSPACE 1104. The implantation of the proposed method is very easy and flexible and allows for operation under parameter variations. Additionally, the obtained results are very significant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...