Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3847, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360883

RESUMO

In this work, we present the synthesis and evaluation of magnetic resonance (MR) properties of novel phosphorus/iron-containing probes for dual 31P and 1H MR imaging and spectroscopy (MRI and MRS). The presented probes are composed of biocompatible semitelechelic and multivalent phospho-polymers based on poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) coordinated with small paramagnetic Fe3+ ions or superparamagnetic maghemite (γ-Fe2O3) nanoparticles via deferoxamine group linked to the end or along the polymer chains. All probes provided very short 1H T1 and T2 relaxation times even at low iron concentrations. The presence of iron had a significant impact on the shortening of 31P relaxation, with the effect being more pronounced for probes based on γ-Fe2O3 and multivalent polymer. While the water-soluble probe having one Fe3+ ion per polymer chain was satisfactorily visualized by both 31P-MRS and 31P-MRI, the probe with multiple Fe3+ ions could only be detected by 31P-MRS, and the probes consisting of γ-Fe2O3 nanoparticles could not be imaged by either technique due to their ultra-short 31P relaxations. In this proof-of-principle study performed on phantoms at a clinically relevant magnetic fields, we demonstrated how the different forms and concentrations of iron affect both the 1H MR signal of the surrounding water molecules and the 31P MR signal of the phospho-polymer probe. Thus, this double contrast can be exploited to simultaneously visualize body anatomy and monitor probe biodistribution.


Assuntos
Imageamento por Ressonância Magnética , Polímeros , Distribuição Tecidual , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Ferro , Água
2.
Pharmaceutics ; 15(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37514168

RESUMO

Superparamagnetic iron oxide nanoparticles (SPION) with a "non-fouling" surface represent a versatile group of biocompatible nanomaterials valuable for medical diagnostics, including oncology. In our study we present a synthesis of novel maghemite (γ-Fe2O3) nanoparticles with positive and negative overall surface charge and their coating by copolymer P(HPMA-co-HAO) prepared by RAFT (reversible addition-fragmentation chain-transfer) copolymerization of N-(2-hydroxypropyl)methacrylamide (HPMA) with N-[2-(hydroxyamino)-2-oxo-ethyl]-2-methyl-prop-2-enamide (HAO). Coating was realized via hydroxamic acid groups of the HAO comonomer units with a strong affinity to maghemite. Dynamic light scattering (DLS) demonstrated high colloidal stability of the coated particles in a wide pH range, high ionic strength, and the presence of phosphate buffer (PBS) and serum albumin (BSE). Transmission electron microscopy (TEM) images show a narrow size distribution and spheroid shape. Alternative coatings were prepared by copolymerization of HPMA with methyl 2-(2-methylprop-2-enoylamino)acetate (MMA) and further post-polymerization modification with hydroxamic acid groups, carboxylic acid and primary-amino functionalities. Nevertheless, their colloidal stability was worse in comparison with P(HPMA-co-HAO). Additionally, P(HPMA-co-HAO)-coated nanoparticles were subjected to a bio-distribution study in mice. They were cleared from the blood stream by the liver relatively slowly, and their half-life in the liver depended on their charge; nevertheless, both cationic and anionic particles revealed a much shorter metabolic clearance rate than that of commercially available ferucarbotran.

3.
Nanomaterials (Basel) ; 11(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34578773

RESUMO

Photoacoustic imaging, an emerging modality, provides supplemental information to ultrasound imaging. We investigated the properties of polypyrrole nanoparticles, which considerably enhance contrast in photoacoustic images, in relation to the synthesis procedure and to their size. We prepared polypyrrole nanoparticles by water-based redox precipitation polymerization in the presence of ammonium persulphate (ratio nPy:nOxi 1:0.5, 1:1, 1:2, 1:3, 1:5) or iron(III) chloride (nPy:nOxi 1:2.3) acting as an oxidant. To stabilize growing nanoparticles, non-ionic polyvinylpyrrolidone was used. The nanoparticles were characterized and tested as a photoacoustic contrast agent in vitro on an imaging platform combining ultrasound and photoacoustic imaging. High photoacoustic signals were obtained with lower ratios of the oxidant (nPy:nAPS ≥ 1:2), which corresponded to higher number of conjugated bonds in the polymer. The increasing portion of oxidized structures probably shifted the absorption spectra towards shorter wavelengths. A strong photoacoustic signal dependence on the nanoparticle size was revealed; the signal linearly increased with particle surface. Coated nanoparticles were also tested in vivo on a mouse model. To conclude, polypyrrole nanoparticles represent a promising contrast agent for photoacoustic imaging. Variations in the preparation result in varying photoacoustic properties related to their structure and allow to optimize the nanoparticles for in vivo imaging.

4.
Metallomics ; 12(11): 1811-1821, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33094772

RESUMO

In this study novel d-mannitol coated maghemite nanoparticles (MIONPs) are presented in terms of their influence on elemental homeostasis of living organisms and for this purpose highly sensitive total reflection X-ray fluorescence was used. Because of the biological indifference of d-mannitol and presumed lower toxicity of maghemite, compared to the most commonly used magnetite in nanomedicine, such nanoparticles seem to be promising candidates for biomedical applications. The examined dose of MIONPs was comparable with one of the lowest doses used in medical diagnostics. However, it should be emphasized that the amount of iron injected in this form is still significant compared to its total content in organs, especially in kidneys or the heart, and may easily disrupt their elemental homeostasis. The aim of the present study was to evaluate the elemental changes occurring in selected rat organs after injecting a low dose of MIONPs. The results were compared with those obtained for previously examined PEG-coated nanoparticles with magnetite cores. In the light of our findings the elemental changes observed after exposure to MIONPs were less extensive than those following PEG-coated magnetite nanoparticle administration.


Assuntos
Elementos Químicos , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Manitol/administração & dosagem , Manitol/farmacologia , Especificidade de Órgãos , Administração Intravenosa , Animais , Cobre/sangue , Masculino , Especificidade de Órgãos/efeitos dos fármacos , Ratos Wistar
5.
Beilstein J Nanotechnol ; 11: 1381-1393, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974116

RESUMO

Glutamate is the main excitatory neurotransmitter in the central nervous system and excessive extracellular glutamate concentration is a characteristic feature of stroke, brain trauma, and epilepsy. Also, glutamate is a potential tumor growth factor. Using radiolabeled ʟ-[14C]glutamate and magnetic fields, we developed an approach for monitoring the biomolecular coating (biocoating) with glutamate of the surface of maghemite (γ-Fe2O3) nanoparticles. The nanoparticles decreased the initial rate of ʟ-[14C]glutamate uptake, and increased the ambient level of ʟ-[14C]glutamate in isolated cortex nerve terminals (synaptosomes). The nanoparticles exhibit a high capability to adsorb glutamate/ʟ-[14C]glutamate in water. Some components of the incubation medium of nerve terminals, that is, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and NaH2PO4, decreased the ability of γ-Fe2O3 nanoparticles to form a glutamate biocoating by about 50% and 90%, respectively. Only 15% of the amount of glutamate biocoating obtained in water was obtained in blood plasma. Albumin did not prevent the formation of a glutamate biocoating. It was shown that the glutamate biocoating is a temporal dynamic structure at the surface of γ-Fe2O3 nanoparticles. Also, components of the nerve terminal incubation medium and physiological fluids responsible for the desorption of glutamate were identified. Glutamate-coated γ-Fe2O3 nanoparticles can be used for glutamate delivery to the nervous system or for glutamate adsorption (but with lower effectiveness) in stroke, brain trauma, epilepsy, and cancer treatment following by its subsequent removal using a magnetic field. γ-Fe2O3 nanoparticles with transient glutamate biocoating can be useful for multifunctional theranostics.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 236: 118355, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32344375

RESUMO

Iron oxide nanoparticles (IONPs) have biomedical and biotechnological applications in magnetic imaging, drug-delivery, magnetic separation and purification. The biocompatibility of such particles may be improved by covering them with coating. In presented paper the biochemical anomalies of liver and kidney occurring in animals exposed to d-mannitol-coated iron(III) oxide nanoparticles (M-IONPs) were examined with Fourier transform infrared (FTIR) microspectroscopy. The dose of IONPs used in the study was significantly lower than those used so far in other research. Liver and kidney tissue sections were analysed by chemical mapping of infrared absorption bands originating from proteins, lipids, compounds containing phosphate groups, cholesterol and cholesterol esters. Changes in content and/or structure of the selected biomolecules were evaluated by comparison of the results obtained for animals treated with M-IONPs with those from control group. Biochemical analysis of liver samples demonstrated a few M-IONPs induced anomalies in the organ, mostly concerning the relative content of the selected compounds. The biomolecular changes, following exposition to nanoparticles, were much more intense within the kidney tissue. Biochemical aberrations found in the organ samples indicated at increase of tissue density, anomalies in fatty acids structure as well as changes in relative content of lipids and proteins. The simultaneous accumulation of lipids, phosphate groups as well as cholesterol and cholesterol esters in kidneys of rats exposed to IONPs may indicate that the particles stimulated formation of lipid droplets within the organ.


Assuntos
Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Colesterol/química , Colesterol/metabolismo , Injeções Intravenosas , Rim/química , Rim/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/química , Fígado/química , Fígado/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Nanopartículas Magnéticas de Óxido de Ferro/química , Masculino , Manitol/química , Fosfatos/química , Fosfatos/metabolismo , Estrutura Secundária de Proteína , Ratos Wistar
7.
Cell Transplant ; 28(5): 553-567, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31293167

RESUMO

Magnetic resonance imaging (MRI) of superparamagnetic iron oxide-labeled cells can be used as a non-invasive technique to track stem cells after transplantation. The aim of this study was to (1) evaluate labeling efficiency of D-mannose-coated maghemite nanoparticles (D-mannose(γ-Fe2O3)) in neural stem cells (NSCs) in comparison to the uncoated nanoparticles, (2) assess nanoparticle utilization as MRI contrast agent to visualize NSCs transplanted into the mouse brain, and (3) test nanoparticle biocompatibility. D-mannose(γ-Fe2O3) labeled the NSCs better than the uncoated nanoparticles. The labeled cells were visualized by ex vivo MRI and their localization subsequently confirmed on histological sections. Although the progenitor properties and differentiation of the NSCs were not affected by labeling, subtle effects on stem cells could be detected depending on dose increase, including changes in cell proliferation, viability, and neurosphere diameter. D-mannose coating of maghemite nanoparticles improved NSC labeling and allowed for NSC tracking by ex vivo MRI in the mouse brain, but further analysis of the eventual side effects might be necessary before translation to the clinic.


Assuntos
Encéfalo/citologia , Rastreamento de Células/métodos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Manose/química , Células-Tronco Neurais/citologia , Animais , Feminino , Compostos Férricos/química , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/transplante
8.
Methods Appl Fluoresc ; 7(1): 014001, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30398160

RESUMO

The safety assessment of nanoparticles (NPs) is crucial during their design and development for biomedicine. One of the prerequisite steps during this evaluation is in vitro testing that employs cell-based assays not always validated and well-adapted for NPs. Interferences with in vitro assays may arise due to the nano-related optical, oxidative, fluorescent, surface and catalytic properties of NPs. Thus, proper validation of each assay system has to be performed for each NP type. This study aimed to evaluate the applicability of the most common in vitro cytotoxicity assays for the safety assessment of up- and down-converting lanthanide-doped NPs. Conventional cell viability tests and fluorescence-based assays for oxidative stress response were selected to determine the biological effects of up- and down-converting NPs to human brain cells. Comparison with known silver and iron oxide NPs was made for verification purposes. Both the plate reader and flow cytometric measurements were examined. The obtained results indicated that both types of Ln-doped NPs interfered to a much lesser extent than metallic NPs. In addition, the great potential of both up- and down-converting NPs for biomedicine was manifested due to their biocompatibility and low toxicity.


Assuntos
Nanopartículas Metálicas/toxicidade , Bioensaio/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Érbio/química , Humanos , Luz , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Estresse Oxidativo , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Itérbio/química
9.
Int J Nanomedicine ; 13: 1693-1706, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29599614

RESUMO

BACKGROUND: Poly-l-lysine (PLL) enhances nanoparticle (NP) uptake, but the molecular mechanism remains unresolved. We asked whether PLL may interact with negatively charged glycoconjugates on the cell surface and facilitate uptake of magnetic NPs (MNPs) by tumor cells. METHODS: PLL-coated MNPs (PLL-MNPs) with positive and negative ζ-potential were prepared and characterized. Confocal and transmission electron microscopy was used to analyze cellular internalization of MNPs. A colorimetric iron assay was used to quantitate cell-associated MNPs (MNPcell). RESULTS: Coadministration of PLL and dextran-coated MNPs in culture enhanced cellular internalization of MNPs, with increased vesicle size and numbers/cell. MNPcell was increased by eight- to 12-fold in response to PLL in a concentration-dependent manner in human glioma and HeLa cells. However, the application of a magnetic field attenuated PLL-induced increase in MNPcell. PLL-coating increased MNPcell regardless of ζ-potential of PLL-MNPs, whereas magnetic force did not enhance MNPcell. In contrast, epigallocatechin gallate and magnetic force synergistically enhanced PLL-MNP uptake. In addition, heparin, but not sialic acid, greatly reduced the enhancement effects of PLL; however, removal of heparan sulfate from heparan sulfate proteoglycans of the cell surface by heparinase III significantly reduced MNPcell. CONCLUSION: Our results suggest that PLL-heparan sulfate proteoglycan interaction may be the first step mediating PLL-MNP internalization by tumor cells. Given these results, PLL may facilitate NP interaction with tumor cells via a molecular mechanism shared by infection machinery of certain viruses.


Assuntos
Proteoglicanas de Heparan Sulfato/química , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Polilisina/farmacocinética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Dextranos/química , Dextranos/metabolismo , Glioma/tratamento farmacológico , Glioma/patologia , Células HeLa , Proteoglicanas de Heparan Sulfato/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Ferro/metabolismo , Campos Magnéticos , Microscopia Eletrônica de Transmissão , Polilisina/química , Polilisina/metabolismo , Polissacarídeo-Liases/metabolismo
10.
Colloids Surf B Biointerfaces ; 161: 35-41, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040832

RESUMO

Magnetic nanoparticles offer multiple possibilities for biomedical applications. Besides their physico-chemical properties, nanoparticle-cellular interactions are determinant for biological safety. In this work, magnetic nanoparticles were synthesized by one-shot precipitation or two-step reaction and coated with biocompatible polymers, such as poly(l-lysine) and poly(N,N-dimethylacrylamide-co-acrylic acid), and carbohydrates, like l-ascorbic acid, d-galactose, d-mannose, and sucrose. The resulting magnetic nanoparticles were characterized by dynamic light scattering, FT-Raman spectroscopy, transmission electron microscopy, SQUID magnetometry, and Mössbauer spectroscopy. Ability of the nanoparticles to be used in theranostic applications was also evaluated, showing that coating with biocompatible polymers increased the heating efficiency. Nanoparticles synthesized by one-shot precipitation were 50% larger (∼13nm) than those obtained by a two-step reaction (∼8nm). Magnetic nanoparticles at concentrations up to 500µgmL-1 were non-cytotoxic to L929 fibroblasts. Particles synthesized by one-shot precipitation had little effect on viability, cell cycle and apoptosis of the three human colon cancer cell lines used: Caco-2, HT-29, and SW-480. At the same concentration (500µgmL-1), magnetic particles prepared by a two-step reaction reduced colon cancer cell viability by 20%, affecting cell cycle and inducing cell apoptosis. Uptake of surface-coated magnetic nanoparticles by colon cancer cells was dependent on particle synthesis, surface coating and incubation time.


Assuntos
Materiais Revestidos Biocompatíveis/química , Magnetismo , Nanopartículas de Magnetita/química , Polímeros/química , Animais , Apoptose/efeitos dos fármacos , Células CACO-2 , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacocinética , Materiais Revestidos Biocompatíveis/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HT29 , Humanos , Camundongos , Propriedades de Superfície , Nanomedicina Teranóstica/métodos
11.
Int J Nanomedicine ; 11: 6267-6281, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27920532

RESUMO

INTRODUCTION: Magnetic resonance (MR) imaging is suitable for noninvasive long-term tracking. We labeled human induced pluripotent stem cell-derived neural precursors (iPSC-NPs) with two types of iron-based nanoparticles, silica-coated cobalt zinc ferrite nanoparticles (CZF) and poly-l-lysine-coated iron oxide superparamagnetic nanoparticles (PLL-coated γ-Fe2O3) and studied their effect on proliferation and neuronal differentiation. MATERIALS AND METHODS: We investigated the effect of these two contrast agents on neural precursor cell proliferation and differentiation capability. We further defined the intracellular localization and labeling efficiency and analyzed labeled cells by MR. RESULTS: Cell proliferation was not affected by PLL-coated γ-Fe2O3 but was slowed down in cells labeled with CZF. Labeling efficiency, iron content and relaxation rates measured by MR were lower in cells labeled with CZF when compared to PLL-coated γ-Fe2O3. Cytoplasmic localization of both types of nanoparticles was confirmed by transmission electron microscopy. Flow cytometry and immunocytochemical analysis of specific markers expressed during neuronal differentiation did not show any significant differences between unlabeled cells or cells labeled with both magnetic nanoparticles. CONCLUSION: Our results show that cells labeled with PLL-coated γ-Fe2O3 are suitable for MR detection, did not affect the differentiation potential of iPSC-NPs and are suitable for in vivo cell therapies in experimental models of central nervous system disorders.


Assuntos
Diferenciação Celular , Feto/citologia , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Pulmão/citologia , Nanopartículas de Magnetita/química , Neurônios/citologia , Proliferação de Células , Células Cultivadas , Meios de Contraste/química , Feminino , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Lisina/química , Imageamento por Ressonância Magnética/métodos , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real
12.
Beilstein J Nanotechnol ; 7: 926-936, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547609

RESUMO

BACKGROUND: Cell tracking is a powerful tool to understand cellular migration, dynamics, homing and function of stem cell transplants. Nanoparticles represent possible stem cell tracers, but they differ in cellular uptake and side effects. Their properties can be modified by coating with different biocompatible polymers. To test if a coating polymer, poly(L-lysine), can improve the biocompatibility of nanoparticles applied to neural stem cells, poly(L-lysine)-coated maghemite nanoparticles were prepared and characterized. We evaluated their cellular uptake, the mechanism of internalization, cytotoxicity, viability and proliferation of neural stem cells, and compared them to the commercially available dextran-coated nanomag(®)-D-spio nanoparticles. RESULTS: Light microscopy of Prussian blue staining revealed a concentration-dependent intracellular uptake of iron oxide in neural stem cells. The methyl thiazolyl tetrazolium assay and the calcein acetoxymethyl ester/propidium iodide assay demonstrated that poly(L-lysine)-coated maghemite nanoparticles scored better than nanomag(®)-D-spio in cell labeling efficiency, viability and proliferation of neural stem cells. Cytochalasine D blocked the cellular uptake of nanoparticles indicating an actin-dependent process, such as macropinocytosis, to be the internalization mechanism for both nanoparticle types. Finally, immunocytochemistry analysis of neural stem cells after treatment with poly(L-lysine)-coated maghemite and nanomag(®)-D-spio nanoparticles showed that they preserve their identity as neural stem cells and their potential to differentiate into all three major neural cell types (neurons, astrocytes and oligodendrocytes). CONCLUSION: Improved biocompatibility and efficient cell labeling makes poly(L-lysine)-coated maghemite nanoparticles appropriate candidates for future neural stem cell in vivo tracking studies.

13.
Int J Nanomedicine ; 11: 1701-15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27217748

RESUMO

Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs - uncoated, coated with d-mannose, or coated with poly-l-lysine - affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles.


Assuntos
Dextranos/farmacologia , Compostos Férricos/farmacologia , Nanopartículas/química , Células-Tronco Neurais/patologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Hidrodinâmica , Nanopartículas de Magnetita , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Células-Tronco Neurais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Eletricidade Estática
14.
Beilstein J Nanotechnol ; 7: 246-62, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26977382

RESUMO

Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible.

15.
Nanoscale ; 7(9): 3954-8, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25652717

RESUMO

Spinal cord injury (SCI) is a condition that results in significant mortality and morbidity. Treatment of SCI utilizing stem cell transplantation represents a promising therapy. However, current conventional treatments are limited by inefficient delivery strategies of cells into the injured tissue. In this study, we designed a magnetic system and used it to accumulate stem cells labelled with superparamagnetic iron oxide nanoparticles (SPION) at a specific site of a SCI lesion. The loading of stem cells with engineered SPIONs that guarantees sufficient attractive magnetic forces was achieved. Further, the magnetic system allowed rapid guidance of the SPION-labelled cells precisely to the lesion location. Histological analysis of cell distribution throughout the cerebrospinal channel showed a good correlation with the calculated distribution of magnetic forces exerted onto the transplanted cells. The results suggest that focused targeting and fast delivery of stem cells can be achieved using the proposed non-invasive magnetic system. With future implementation the proposed targeting and delivery strategy bears advantages for the treatment of disease requiring fast stem cell transplantation.


Assuntos
Nanopartículas de Magnetita/química , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco , Animais , Óxido Ferroso-Férrico/química , Campos Magnéticos , Camundongos , Microscopia de Fluorescência , Células-Tronco/química , Células-Tronco/citologia , Células-Tronco/metabolismo
16.
J Biomed Mater Res B Appl Biomater ; 103(6): 1141-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25283523

RESUMO

Coprecipitation of FeCl2 and FeCl3 with aqueous ammonia was used to prepare iron oxide nanoparticles dispersible in aqueous medium. Oxidation of the particles with sodium hypochlorite then yielded maghemite (γ-Fe2 O3 ) nanoparticles which were coated with two types of coating -d-mannose or poly(l-lysine) (PLL) as confirmed by FTIR analysis. The particles were <10 nm according to transmission electron microscopy. Their hydrodynamic particle size was ∼180 nm (by dynamic light scattering). The d-mannose-, PLL-coated, and neat γ-Fe2 O3 particles as well as commercial Resovist® were used to label rat macrophages. The viability and contrast properties of labeled macrophages were compared. PLL-coated γ-Fe2 O3 nanoparticles were found optimal. The labeled macrophages were injected to rats monitored in vivo by magnetic resonance imaging up to 48 h. Transport of macrophages labeled with PLL-γ-Fe2 O3 nanoparticles in rats was confirmed. Tracking of macrophages using the developed particles can be used for monitoring of inflammations and cell migration in cell therapy.


Assuntos
Rastreamento de Células/métodos , Meios de Contraste , Compostos Férricos , Macrófagos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Polilisina , Animais , Meios de Contraste/química , Meios de Contraste/farmacologia , Compostos Férricos/química , Compostos Férricos/farmacologia , Masculino , Tamanho da Partícula , Polilisina/química , Polilisina/farmacologia , Radiografia , Ratos
17.
Beilstein J Nanotechnol ; 5: 1732-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383284

RESUMO

Surface-modified maghemite (γ-Fe2O3) nanoparticles were obtained by using a conventional precipitation method and coated with D-mannose and poly(N,N-dimethylacrylamide). Both the initial and the modified particles were characterized by transmission electron microscopy and dynamic light scattering with regard to morphology, particle size and polydispersity. In vitro survival of human stem cells was then investigated by using the methyl thiazolyl tetrazolium (MTT) assay, which showed that D-mannose- and poly(N,N-dimethylacrylamide)-coated γ-Fe2O3 particles exhibit much lower level of cytotoxicity than the non-coated γ-Fe2O3.

18.
Beilstein J Nanotechnol ; 5: 778-88, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24991515

RESUMO

The manipulation of brain nerve terminals by an external magnetic field promises breakthroughs in nano-neurotechnology. D-Mannose-coated superparamagnetic nanoparticles were synthesized by coprecipitation of Fe(II) and Fe(III) salts followed by oxidation with sodium hypochlorite and addition of D-mannose. Effects of D-mannose-coated superparamagnetic maghemite (γ-Fe2O3) nanoparticles on key characteristics of the glutamatergic neurotransmission were analysed. Using radiolabeled L-[(14)C]glutamate, it was shown that D-mannose-coated γ-Fe2O3 nanoparticles did not affect high-affinity Na(+)-dependent uptake, tonic release and the extracellular level of L-[(14)C]glutamate in isolated rat brain nerve terminals (synaptosomes). Also, the membrane potential of synaptosomes and acidification of synaptic vesicles was not changed as a result of the application of D-mannose-coated γ-Fe2O3 nanoparticles. This was demonstrated with the potential-sensitive fluorescent dye rhodamine 6G and the pH-sensitive dye acridine orange. The study also focused on the analysis of the potential use of these nanoparticles for manipulation of nerve terminals by an external magnetic field. It was shown that more than 84.3 ± 5.0% of L-[(14)C]glutamate-loaded synaptosomes (1 mg of protein/mL) incubated for 5 min with D-mannose-coated γ-Fe2O3 nanoparticles (250 µg/mL) moved to an area, in which the magnet (250 mT, gradient 5.5 Т/m) was applied compared to 33.5 ± 3.0% of the control and 48.6 ± 3.0% of samples that were treated with uncoated nanoparticles. Therefore, isolated brain nerve terminals can be easily manipulated by an external magnetic field using D-mannose-coated γ-Fe2O3 nanoparticles, while the key characteristics of glutamatergic neurotransmission are not affected. In other words, functionally active synaptosomes labeled with D-mannose-coated γ-Fe2O3 nanoparticles were obtained.

19.
J Biomed Nanotechnol ; 9(3): 479-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23621005

RESUMO

gamma-Fe2O3 nanoparticles obtained by coprecipitation of Fe(II) and Fe(III) chlorides with a base and subsequent oxidation were coated with a shell of hydrophilic biocompatible poly(N,N-dimethylacrylamide) (PDMAAm). Various initiators were attached to the iron oxide surface to enable the use of the "grafting-from" approach for immobilization of PDMAAm. They included 2,2'-azobis(2-methylpropanimidamide) dihydrochloride (AMPA), 2,2'-azobis(N-hydroxy-2-methylpropanimidamide) dihydrochloride (ABHA) and 4-cyano-4-{[1-cyano-3-(N-hydroxycarbamoyl)-1-methylpropyl]azo}pentanoic acid (CCHPA). Engulfment of PDMAAm-coated y-Fe2O3 nanoparticles by murine J774.2 macrophages was investigated. Only some nanoparticles were engulfed by the macrophages. PDMAAm-AMPA-gamma-Fe2O3 and PDMAAm-ABHA-y-Fe2O3 nanoparticles were rapidly engulfed by the cells. In contrast, neat y-Fe2O3 and PDMAAm-CCHPA-gamma-Fe2O3 particles induced formation of transparent vacuoles indicating toxicity of the particles. Thus, PDMAAm-coated AMPA- and ABHA-gamma-Fe2O3 nanoparticles can be recommended as non-toxic labels for mammalian cells.


Assuntos
Acrilamidas/farmacologia , Compostos Férricos/farmacologia , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Imãs , Nanopartículas/química , Acrilamidas/química , Animais , Linhagem Celular , Luz , Macrófagos/efeitos dos fármacos , Fenômenos Magnéticos , Mamíferos/metabolismo , Camundongos , Microscopia de Fluorescência , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polimerização/efeitos dos fármacos , Espalhamento de Radiação , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Cancer Res ; 73(8): 2445-56, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23423977

RESUMO

Biologic and therapeutic advances in melanoma brain metastasis are hampered by the paucity of reproducible and predictive animal models. In this work, we developed a robust model of brain metastasis that empowers quantitative tracking of cellular dissemination and tumor progression. Human melanoma cells labeled with superparamagnetic iron oxide nanoparticles (SPION) were injected into the left cardiac ventricle of mice and visualized by MRI. We showed that SPION exposure did not affect viability, growth, or migration in multiple cell lines across several in vitro assays. Moreover, labeling did not impose changes in cell-cycle distribution or apoptosis. In vivo, several SPION-positive cell lines displayed similar cerebral imaging and histologic features. MRI-based automated quantification of labeled cells in the brain showed a sigmoid association between metastasis frequency and doses of inoculated cells. Validation of this fully automated quantification showed a strong correlation with manual signal registration (r(2) = 0.921, P < 0.001) and incidence of brain metastases (r(2) = 0.708, P < 0.001). Metastasis formation resembled the pattern seen in humans and was unaffected by SPION labeling (histology; tumor count, P = 0.686; survival, P = 0.547). In summary, we present here a highly reproducible animal model that can improve the predictive value of mechanistic and therapeutic studies of melanoma brain metastasis.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/secundário , Rastreamento de Células , Nanopartículas de Magnetita , Melanoma/diagnóstico , Melanoma/patologia , Animais , Apoptose , Transporte Biológico , Neoplasias Encefálicas/mortalidade , Ciclo Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular , Citoplasma/metabolismo , Modelos Animais de Doenças , Feminino , Compostos Férricos/química , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Melanoma/mortalidade , Camundongos , Coloração e Rotulagem , Fatores de Tempo , Carga Tumoral , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...