Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38004678

RESUMO

The guts of insect pests are typical habitats for microbial colonization and the presence of bacterial species inside the gut confers several potential advantages to the insects. These gut bacteria are located symbiotically inside the digestive tracts of insects and help in food digestion, phytotoxin breakdown, and pesticide detoxification. Different shapes and chemical assets of insect gastrointestinal tracts have a significant impact on the structure and makeup of the microbial population. The number of microbial communities inside the gastrointestinal system differs owing to the varying shape and chemical composition of digestive tracts. Due to their short generation times and rapid evolutionary rates, insect gut bacteria can develop numerous metabolic pathways and can adapt to diverse ecological niches. In addition, despite hindering insecticide management programs, they still have several biotechnological uses, including industrial, clinical, and environmental uses. This review discusses the prevalent bacterial species associated with insect guts, their mode of symbiotic interaction, their role in insecticide resistance, and various other biological significance, along with knowledge gaps and future perspectives. The practical consequences of the gut microbiome and its interaction with the insect host may lead to encountering the mechanisms behind the evolution of pesticide resistance in insects.

2.
Curr Res Microb Sci ; 5: 100200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37706093

RESUMO

Rhizobacteria associated with cultivated crops are known to stimulate plant growth through various indirect or direct mechanisms. In recent years, the host list of plant growth promotion/promoting rhizobacteria has expanded to include bean, barley, cotton, maize, rice, vegetables, peanut, rice, wheat, and several plantation crops. However, interaction of rhizobacteria with tea plants of organic and conventional tea gardens is poorly understood. In the present study, rhizobacterial species associated with tea rhizosphere were isolated from 14 tea gardens located in North Bengal, India. In total, 16 rhizobacterial isolates isolated from collected soil samples were assessed for antagonistic and plant growth promotion/promoting activity under laboratory conditions. Molecular characterization based on sequencing of 16S rRNA gene revealed dominance of Bacillus with five species followed by Pseudomonas with two species. Interestingly, only one isolate was affiliated with actinobacteria, i.e., Microbacterium barkeri. Out of 16 isolates, isolates Bacillus subtilis OKAKP01, B. subtilis BNLG01, B. paramycoides BOK01, M. barkeri BPATH02, and Stenotrophomonas maltophilia BSEY01 showed highest growth inhibition against Fusarium solani (68.2 to 72.8%), Pseudopestalotiopsis theae (71.1 to 85.6%), and Exobasidium vexans (67.4 to 78.3%) causing respective Fusarium dieback, gray blight, and blister blight diseases in tea crop. Further, these five isolates also possessed significantly greater antifungal (siderophore producer, protease, chitinase, and cellulase activity) and plant growth promotion/promoting (indole-3-acetic acid production, ACC deaminase, ammonia, and phosphate solubilization) traits over other eleven rhizobacterial isolates. Therefore, these five isolates of rhizobacteria were chosen for their plant growth promotion/promoting activity on tea plants in nursery conditions. Results from nursery experiments revealed that these five rhizobacteria significantly improved growth rates of tea plants compared with the control. Therefore, this study suggests that these rhizobacteria could be used to formulate biopesticides and biofertilizers, which could be applied to sustainable tea cultivation to improve crop health and reduce disease attack.

3.
World J Microbiol Biotechnol ; 39(1): 34, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469148

RESUMO

Gray blight, a fungal disease caused by Pestalotiopsis-like species, is a widespread disease affecting tea crop (Camellia sinensis (L.) Kuntze) in many tea-growing countries, including India, resulting in huge losses in tea production. In India, several studies have been conducted to understand the fungal diseases of tea crop, but gray blight has not been well described in major tea growing areas such as in North Bengal, based on its geographic distribution, molecular analysis, or pathogenicity, and even fungicide resistance. The objective of this study was to identify and characterize the causative agents of gray blight disease in symptomatic leaf sample of tea crop collected from 27 tea gardens located in North Bengal, India and to evaluate some common fungicides against them in order to understand the resistance mechanism. In this study, we characterized Pestalotiopsis-like species based on the phylogenies of DNA sequences (internal transcribed spacers) and assessment of conidial characteristics. The study revealed that out of 27 isolates of gray blight pathogens, 17 belonged to the genus Pseudopestalotiopsis (Ps.), six isolates were Neopestalotiopsis, and four were Pestalotiopsis. Two novel species, Ps. thailandica and N. natalensis were introduced through this study. The most frequently isolated genus from C. chinensis was Pseudopestalotiopsis. Pathogenicity tests showed that the isolates displayed significantly different virulence when inoculated onto wounded tea leaves and the mycelial growth rate was positively correlated with pathogenicity (P < 0.01). Based on the 13 ISSR (Inter Simple Sequence Repeat) markers used and principal coordinate analysis, it was found that isolates were very diverse. Out of 27 isolates, IND0P2, DLG0P10, and BHAT0P11 isolates were insensitive against both MBC + M3 (Carbendazim + Mancozeb) and DMI (Hexaconazole) fungicides, while isolates SANY0P18, PAHG0P19, RANG0P24, and SING0P25 were insensitive only against MBC + M3 fungicide. Further, these insensitive isolates were grouped into separate clusters by ISSR, indicating their distinctiveness. However, all the evaluated isolates were susceptible to M1 (copper oxychloride) and another DMI (propiconazole) fungicides. Therefore, to manage gray blight, fungicide resistance management strategies as recommended by Fungicide Resistance Action Committee should be implemented.


Assuntos
Camellia sinensis , Fungicidas Industriais , Xylariales , Fungicidas Industriais/farmacologia , Pestalotiopsis , Doenças das Plantas/microbiologia , Camellia sinensis/microbiologia , Chá
4.
Front Plant Sci ; 13: 1017145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605950

RESUMO

Harnessing the potential yields of evergreen perennial crops like tea (Camellia sinensis L.) essentially requires the application of optimum doses of nutrients based on the soil test reports. In the present study, the soil pH, organic carbon (OC), available potassium as K2O (AK), and available sulphur (AS) of 7300 soil samples from 115 tea estates spread over the Dooars ranging from 88°52'E to 89°86'E longitude and 26°45'N to 27°00'N latitude of West Bengal, India have been documented. About 54% of soil samples were found within the optimum range of soil pH (4.50-5.50) for tea cultivation. The overall range of OC was found from 0.28% to 6.00% of which, 94% of the analyzed samples were within the range of satisfactory to excellent level of OC i.e. (>0.80% to 6.00%). Around 36.3% of soil samples were found to have high AK (>100 mg kg-1) but 37.1% of soils were found to have high AS content (>40 mg kg-1). The nutrient index status of soil pH was low in Dam Dim, Chulsa, Nagrakata, Binnaguri, and Jainti sub-districts. Soils from five sub-districts had a high nutrient index (2.47 to 2.83) for soil organic carbon. However, it existed in the medium index (1.69 and 2.22) for Dalgaon and Kalchini sub-districts. Only Nagrakata sub-district soil samples were in the high nutrient index (2.65) for AK. All analyzed samples showed a medium nutrient index (1.97 to 2.27) for AS. The result indicated that soil pH was significantly negatively correlated with soil OC (-0.336) and AK (-0.174). However, the soil OC was significantly positive correlated with AK (0.258) and AS (0.100). It could be concluded that a balanced fertilizer application would be needed as a part of the soil improvement program through soil chemical tests for sustainable tea cultivation.

5.
Front Insect Sci ; 2: 1048299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38468791

RESUMO

The scale insects reduce plant photosynthetic ability by sucking sap from leaves and causing significant damage to the tea crop in most tea-producing countries. They suck the sap from stems and tea leaves, which not only prevents further growth but also reduces the nutritional quality of the leaves by promoting the growth of sooty molds. However, due to the widespread use of organosynthetic pesticides in recent decades, most insect pests have developed high levels of pesticide resistance, reducing the effectiveness of insecticide application. Bio-control agents are environmentally safe and produce long-term results while reducing the use of chemicals and other pesticides without disrupting the natural equilibrium. The review includes a list of coccidicides discovered on tea in major tea-growing countries as potential tea pests. The scope of future studies and the plans for better management of this serious sucking pest of the tea plant are also discussed in this review.

6.
Front Nutr ; 8: 686131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447773

RESUMO

Background: Tea is a natural beverage made from the tender leaves of the tea plant (Camellia sinensis Kuntze). Being of a perennial and monoculture nature in terms of its cultivation system, it provides a stable micro-climate for various insect pests, which cause substantial loss of crop. With the escalating cost of insect pest management and increasing concern about the adverse effects of the pesticide residues in manufactured tea, there is an urgent need to explore other avenues for pest management strategies. Aim: Integrated pest management (IPM) in tea invites an multidisciplinary approach owing to the high pest diversity in the perennial tea plantation system. In this review, we have highlighted current developments of nanotechnology for crop protection and the prospects of nanoparticles (NPs) in plant protection, emphasizing the control of different major pests of tea plantations. Methods: A literature search was performed using the ScienceDirect, Web of Science, Pubmed, and Google Scholar search engines with the following terms: nanotechnology, nanopesticides, tea, and insect pest. An article search concentrated on developments after 1988. Results: We have described the impact of various pests in tea production and innovative approaches on the use of various biosynthesized and syntheric nanopesticides against specific insect pest targets. Simultaneously, we have provided support for NP-based technology and their different categories that are currently employed for the management of pests in different agro-ecosystems. Besides the broad categories of active ingredients (AI) of synthetic insecticides, pheromones and natural resource-based molecules have pesticidal activity and can also be used with NPs as a carriers as alternatives to traditional pest control agents. Finally, the merits and demerits of incorporating NP-based nanopesticides are also illustrated. Conclusions: Nanopesticides for plant protection is an emerging research field, and it offers new methods to design active ingredients amid nanoscale dimensions. Nanopesticide-based formulations have a potential and bright future for the development of more effective and safer pesticide/biopesticides.

7.
Plant Dis ; 105(7): 1868-1879, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33734810

RESUMO

Tea (Camellia sinensis [L.] O. Kuntze) is a plantation crop, grown commercially in Asia, Africa, and South America. Among biotic threats to tea production, diseases caused by fungal pathogens are most significant. Worldwide, tea plants are challenged by several root, stem, and foliar diseases. Foliar diseases, blister blight, gray blight, and brown blight are particularly important as they adversely affect the bud and the two youngest leaves, causing loss of harvestable shoots. Over the past several decades, climate change and field management practices have influenced the risk of crop damage by several fungal pathogens, as well as the development and spread of diseases. Management interventions, such as the adoption of good cultural/agronomic practices, use of fungicides and microbial biocontrol agents, plant defense elicitors, and deployment of resistant cultivars, have mitigated damage to tea plants caused by fungal diseases. A clearer understanding of knowledge gaps and the benefits of plant disease management strategies available is needed. The present article reviews the prevailing knowledge of major fungal pathogens of the tea crop, their genetic variability, the damage they cause and its economic impact, and the need for new disease management strategies as climate change intensifies. We will also emphasize important knowledge gaps that are priority targets for future research.


Assuntos
Camellia sinensis , Micoses , Doenças das Plantas/prevenção & controle , Folhas de Planta , Chá
9.
Sci Rep ; 8(1): 8924, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895987

RESUMO

We sequenced the Hyposidra talaca NPV (HytaNPV) double stranded circular DNA genome using PacBio single molecule sequencing technology. We found that the HytaNPV genome is 139,089 bp long with a GC content of 39.6%. It encodes 141 open reading frames (ORFs) including the 37 baculovirus core genes, 25 genes conserved among lepidopteran baculoviruses, 72 genes known in baculovirus, and 7 genes unique to the HytaNPV genome. It is a group II alphabaculovirus that codes for the F protein and lacks the gp64 gene found in group I alphabaculovirus viruses. Using RNA-seq, we confirmed the expression of the ORFs identified in the HytaNPV genome. Phylogenetic analysis showed HytaNPV to be closest to BusuNPV, SujuNPV and EcobNPV that infect other tea pests, Buzura suppressaria, Sucra jujuba, and Ectropis oblique, respectively. We identified repeat elements and a conserved non-coding baculovirus element in the genome. Analysis of the putative promoter sequences identified motif consistent with the temporal expression of the genes observed in the RNA-seq data.


Assuntos
Genoma Viral/genética , Mariposas/virologia , Nucleopoliedrovírus/genética , Transcriptoma/genética , Sequenciamento Completo do Genoma/métodos , Sequência de Aminoácidos , Animais , Sequência de Bases , Genes Virais/genética , Larva/virologia , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/fisiologia , Fases de Leitura Aberta/genética , Filogenia , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
10.
Appl Microbiol Biotechnol ; 100(11): 4831-44, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27102124

RESUMO

India is the second largest producer of black tea in the world. The biggest challenge for tea growers of India nowadays is to combat pests and diseases. Tea crop in India is infested by not less than 720 insect and mite species. At least four sucking pests and six chewing pests have well established themselves as regular pests causing substantial damage to this foliage crop. Various synthetic pesticides are widely used for the management of tea pests in India. Applications of such large quantity of pesticides could cause various problems such as development of resistance, deleterious effects on non-target organisms such as insect predators and parasitoids, upsetting the ecological balance, and accumulation of pesticide residues on tea leaves. There is a growing demand for organic tea or at least pesticide residue free tea in the international market which affects the export price. There is also a higher emphasis of implementation of new regulations on internationally traded foods and implementation of Plant Protection Code (PPC) for tea by the Government of India. This necessitates a relook into the usage pattern of synthetic pesticides on this crop. There are various non-chemical interventions which are being worked out for their sustainability, compatibility, and eco-friendly properties which can gradually replace the use of toxic chemicals. The application of plant extracts with insecticidal properties provides an alternative to the synthetic pesticides. Botanical products, especially neem-based products, have made a relatively moderate impact in tea pest control. Research has also demonstrated the potential of 67 plant species as botanical insecticides against tea pests. The majority of plant products used in pest management of tea in India are in the form of crude extracts prepared locally in tea garden itself, and commercial standardized formulations are not available for most of the plants due to lack of scientific research in the area. Apart from systematic research in this area, to facilitate the simplified and trade friendly registration procedures with quality assurance of the products, there is an increasing need of regulatory authority and national norms in India.


Assuntos
Insetos , Inseticidas/química , Controle Biológico de Vetores , Extratos Vegetais/química , Chá , Animais , Índia , Óleos Voláteis/química
11.
Exp Appl Acarol ; 61(1): 43-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23430022

RESUMO

Green lacewing, Mallada desjardinsi Navas, is an important predator of red spider mite, Oligonychus coffeae infesting tea. Life history, life table and efficacy of M. desjardinsi were determined using red spider mite as prey under laboratory conditions. Duration of development of M. desjardinsi recorded was 5.1, 13.8 and 13 days for eggs, larvae and pupae respectively, with an average of 31.9 days from egg to adult emergence. After a mean pre oviposition period of 7.1 days, a single female laid an average of 252.6 eggs in its life time. Adult longevity of the male was recorded as 39.6 days while the females lived longer (58.2 days). The life table of M. desjardinsi was characterized by an intrinsic rate of increase (r) of 0.096 day, net reproductive rate (R 0 ) of 153.19 eggs/female, gross reproduction rate (∑mx) of 167.28 eggs/female, generation time (T) of 52.47 days, doubling time of 7.22 days and finite rate of increase(λ) of 1.1 day. The optimum predator-prey ratios were 1:50 and 1:33 under laboratory conditions however, 1:33 and 1:25 ratios were effective in green house conditions. The results of the study can be considered as a first step towards the utilization of this predator in an IPM program for the management of red spider mite infesting tea.


Assuntos
Insetos/fisiologia , Comportamento Predatório , Tetranychidae , Animais , Camellia sinensis , Feminino , Insetos/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Longevidade , Masculino , Oviposição , Controle Biológico de Vetores , Reprodução
12.
Exp Appl Acarol ; 60(2): 229-40, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23247399

RESUMO

Life table and predation of the predatory mite Neoseiulus longispinosus (Evans) on the red spider mite (RSM), Oligonychus coffeae (Nietner), a major pest of tea in India, were studied in the laboratory. Developmental time from egg to adult varied from 4 to 14 days at 30 to 15 °C, respectively; at 35 °C no larva survived. Survival of immature stages was more than 94 % at all temperatures. Threshold temperature for development of immature stages of females and males was 10 and 9.9 °C, respectively, and thermal constant was 84.03 degree-days for females and 80 for males. Sex ratio was female biased and temperature (20-30 °C) had no clear effect on sex determination. Egg hatchability was 73 % at 35 °C and >97 % at lower temperatures. Average number of eggs laid per female/day was higher at 30 °C than at 20 or 25 °C. The highest net reproductive rate (R 0) was 40.7, at 20 °C. Mean generation time (T) decreased from 28 to 13 days with temperature increasing from 20 to 30 °C. Weekly multiplication (6.5) and intrinsic rate of natural increase (r m ) (0.268) were highest at 30 °C. Males lived longer than females at every temperature tested. Longevity was highest at 20 °C (50 days for females and 55 for males). Survival and longevity were adversely affected by temperature above 30 °C. Daily consumption of prey increased with the advancement of predator's life stages; adult females consumed the highest numbers of prey items, preferably larvae and nymphs.


Assuntos
Ácaros e Carrapatos/fisiologia , Camellia sinensis/parasitologia , Comportamento Predatório/fisiologia , Ácaros e Carrapatos/classificação , Animais , Feminino , Masculino , Temperatura , Fatores de Tempo
13.
J Insect Sci ; 12: 125, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23452011

RESUMO

Functional and numerical responses of the predatory mite, Neoseiulus longispinosus (Evans) (Acari: Phytoseiidae) to the red spider mite, Oligonychus coffeae Nietner (Acari: Tetranychidae), infesting tea were determined in a laboratory on leaf discs. Prey consumption increased with increases in temperature and prey density. Handling time decreased and successful attack rate increased with increased temperature. N. longispinosus was more voracious on larvae and nymphs than on adults of O. coffeae. Handling time was higher on adult females than on larvae. Rate of predation leveled off at temperatures greater than 25° C. Functional responses to prey density at six temperatures and to each life stage of O. coffeae approximated the Holling type II model. The oviposition rate increased with prey consumption and temperature. On average, a predator consumed 1.62 adult female prey for every egg it laid. With a fixed number of prey available, predation rate per predator decreased with increased predator density.


Assuntos
Ácaros e Carrapatos/fisiologia , Ácaros e Carrapatos/crescimento & desenvolvimento , Animais , Agentes de Controle Biológico , Feminino , Cadeia Alimentar , Índia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Oviposição , Folhas de Planta , Dinâmica Populacional , Comportamento Predatório , Chá , Temperamento , Tetranychidae/crescimento & desenvolvimento , Tetranychidae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...