Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(2): 101268, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38911286

RESUMO

Excessive cytosolic calcium accumulation contributes to muscle degeneration in Duchenne muscular dystrophy (DMD). Sarco/endoplasmic reticulum calcium ATPase (SERCA) is a sarcoplasmic reticulum (SR) calcium pump that actively transports calcium from the cytosol into the SR. We previously showed that adeno-associated virus (AAV)-mediated SERCA2a therapy reduced cytosolic calcium overload and improved muscle and heart function in the murine DMD model. Here, we tested whether AAV SERCA2a therapy could ameliorate muscle disease in the canine DMD model. 7.83 × 1013 vector genome particles of the AAV vector were injected into the extensor carpi ulnaris (ECU) muscles of four juvenile affected dogs. Contralateral ECU muscles received excipient. Three months later, we observed widespread transgene expression and significantly increased SERCA2a levels in the AAV-injected muscles. Treatment improved SR calcium uptake, significantly reduced calpain activity, significantly improved contractile kinetics, and significantly enhanced resistance to eccentric contraction-induced force loss. Nonetheless, muscle histology was not improved. To evaluate the safety of AAV SERCA2a therapy, we delivered the vector to the ECU muscle of adult normal dogs. We achieved strong transgene expression without altering muscle histology and function. Our results suggest that AAV SERCA2a therapy has the potential to improve muscle performance in a dystrophic large mammal.

2.
JCI Insight ; 9(9)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564291

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn-/-) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/-) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium. Germline reduction of SLN expression in mdx:utrn-/- mice improved cardiac sarco/endoplasmic reticulum (SR) Ca2+ cycling, reduced cardiac fibrosis, and improved cardiac function. At the cellular level, reducing SLN expression prevented mitochondrial Ca2+ overload, reduced mitochondrial membrane potential loss, and improved mitochondrial function. Transmission electron microscopy of myocardial tissues and proteomic analysis of mitochondria-associated membranes showed that reducing SLN expression improved mitochondrial structure and SR-mitochondria interactions in dystrophic cardiomyocytes. These findings indicate that SLN upregulation plays a substantial role in the pathogenesis of cardiomyopathy and that reducing SLN expression has clinical implications in the treatment of DMD cardiomyopathy.


Assuntos
Cardiomiopatias , Distrofina , Camundongos Endogâmicos mdx , Camundongos Knockout , Proteínas Musculares , Distrofia Muscular de Duchenne , Proteolipídeos , Utrofina , Animais , Masculino , Camundongos , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Mitocôndrias Cardíacas/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteolipídeos/metabolismo , Proteolipídeos/genética , Utrofina/genética , Utrofina/metabolismo
3.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745514

RESUMO

Sympathetic nerves co-develop with their target organs and release neurotransmitters to stimulate their functions after maturation. Here, we provide the molecular mechanism that during sweat gland morphogenesis, neurotransmitters released from sympathetic nerves act first to promote sweat duct elongation via norepinephrine and followed by acetylcholine to specify sweat gland stem cell fate, which matches the sequence of neurotransmitter switch. Without neuronal signals during development, the basal cells switch to exhibit suprabasal (luminal) cell features. Sarcolipin (SLN), a key regulator of sarcoendoplasmic reticulum (SR) Ca 2+ -ATPase (SERCA), expression is significantly down-regulated in the sweat gland myoepithelial cells upon denervation. Loss of SLN in sweat gland myoepithelial cells leads to decreased intracellular Ca 2+ over time in response to ACh stimulation, as well as upregulation of luminal cell features. In cell culture experiments, we showed that contrary to the paradigm that elevation of Ca 2+ promote epidermal differentiation, specification of the glandular myoepithelial (basal) cells requires high Ca 2+ while lowering Ca 2+ level promotes luminal (suprabasal) cell fate. Our work highlights that neuronal signals not only act transiently for mature sweat glands to function, but also exert long-term impact on glandular stem cell specification through regulating intracellular Ca 2+ dynamics.

4.
Circ Res ; 133(1): 6-21, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37232152

RESUMO

BACKGROUND: Obesity induces cardiomyopathy characterized by hypertrophy and diastolic dysfunction. Whereas mitophagy mediated through an Atg7 (autophagy related 7)-dependent mechanism serves as an essential mechanism to maintain mitochondrial quality during the initial development of obesity cardiomyopathy, Rab9 (Ras-related protein Rab-9A)-dependent alternative mitophagy takes over the role during the chronic phase. Although it has been postulated that DRP1 (dynamin-related protein 1)-mediated mitochondrial fission and consequent separation of the damaged portions of mitochondria are essential for mitophagy, the involvement of DRP1 in mitophagy remains controversial. We investigated whether endogenous DRP1 is essential in mediating the 2 forms of mitophagy during high-fat diet (HFD)-induced obesity cardiomyopathy and, if so, what the underlying mechanisms are. METHODS: Mice were fed either a normal diet or an HFD (60 kcal %fat). Mitophagy was evaluated using cardiac-specific Mito-Keima mice. The role of DRP1 was evaluated using tamoxifen-inducible cardiac-specific Drp1knockout (Drp1 MCM) mice. RESULTS: Mitophagy was increased after 3 weeks of HFD consumption. The induction of mitophagy by HFD consumption was completely abolished in Drp1 MCM mouse hearts, in which both diastolic and systolic dysfunction were exacerbated. The increase in LC3 (microtubule-associated protein 1 light chain 3)-dependent general autophagy and colocalization between LC3 and mitochondrial proteins was abolished in Drp1 MCM mice. Activation of alternative mitophagy was also completely abolished in Drp1 MCM mice during the chronic phase of HFD consumption. DRP1 was phosphorylated at Ser616, localized at the mitochondria-associated membranes, and associated with Rab9 and Fis1 (fission protein 1) only during the chronic, but not acute, phase of HFD consumption. CONCLUSIONS: DRP1 is an essential factor in mitochondrial quality control during obesity cardiomyopathy that controls multiple forms of mitophagy. Although DRP1 regulates conventional mitophagy through a mitochondria-associated membrane-independent mechanism during the acute phase, it acts as a component of the mitophagy machinery at the mitochondria-associated membranes in alternative mitophagy during the chronic phase of HFD consumption.


Assuntos
Cardiomiopatias , Mitofagia , Animais , Camundongos , Autofagia/fisiologia , Cardiomiopatias/genética , Dinaminas/genética , Dinaminas/metabolismo , Coração , Dinâmica Mitocondrial , Mitofagia/fisiologia , Obesidade/genética
5.
Nat Commun ; 14(1): 602, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746942

RESUMO

Polyglutamine expansion in the androgen receptor (AR) causes spinobulbar muscular atrophy (SBMA). Skeletal muscle is a primary site of toxicity; however, the current understanding of the early pathological processes that occur and how they unfold during disease progression remains limited. Using transgenic and knock-in mice and patient-derived muscle biopsies, we show that SBMA mice in the presymptomatic stage develop a respiratory defect matching defective expression of genes involved in excitation-contraction coupling (ECC), altered contraction dynamics, and increased fatigue. These processes are followed by stimulus-dependent accumulation of calcium into mitochondria and structural disorganization of the muscle triads. Deregulation of expression of ECC genes is concomitant with sexual maturity and androgen raise in the serum. Consistent with the androgen-dependent nature of these alterations, surgical castration and AR silencing alleviate the early and late pathological processes. These observations show that ECC deregulation and defective mitochondrial respiration are early but reversible events followed by altered muscle force, calcium dyshomeostasis, and dismantling of triad structure.


Assuntos
Androgênios , Atrofia Bulboespinal Ligada ao X , Camundongos , Animais , Androgênios/metabolismo , Atrofia Bulboespinal Ligada ao X/genética , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Receptores Androgênicos/metabolismo , Mitocôndrias/metabolismo , Respiração , Modelos Animais de Doenças
6.
J Am Heart Assoc ; 12(3): e027480, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36695318

RESUMO

Background Cardiomyopathy is a leading health threat in Duchenne muscular dystrophy (DMD). Cytosolic calcium upregulation is implicated in DMD cardiomyopathy. Calcium is primarily removed from the cytosol by the sarcoendoplasmic reticulum calcium ATPase (SERCA). SERCA activity is reduced in DMD. Improving SERCA function may treat DMD cardiomyopathy. Dwarf open reading frame (DWORF) is a recently discovered positive regulator for SERCA, hence, a potential therapeutic target. Methods and Results To study DWORF's involvement in DMD cardiomyopathy, we quantified DWORF expression in the heart of wild-type mice and the mdx model of DMD. To test DWORF gene therapy, we engineered and characterized an adeno-associated virus serotype 9-DWORF vector. To determine if this vector can mitigate DMD cardiomyopathy, we delivered it to 6-week-old mdx mice (6×1012 vector genome particles/mouse) via the tail vein. Exercise capacity, heart histology, and cardiac function were examined at 18 months of age. We found DWORF expression was significantly reduced at the transcript and protein levels in mdx mice. Adeno-associated virus serotype 9-DWORF vector significantly enhanced SERCA activity. Systemic adeno-associated virus serotype 9-DWORF therapy reduced myocardial fibrosis and improved treadmill running, electrocardiography, and heart hemodynamics. Conclusions Our data suggest that DWORF deficiency contributes to SERCA dysfunction in mdx mice and that DWORF gene therapy holds promise to treat DMD cardiomyopathy.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Camundongos Endogâmicos mdx , Cálcio , Fases de Leitura Aberta , Cardiomiopatias/genética , Cardiomiopatias/terapia , Terapia Genética/métodos
7.
Am J Physiol Cell Physiol ; 322(2): C260-C274, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986021

RESUMO

Duchenne muscular dystrophy (DMD) is an inherited muscle wasting disease. Metabolic impairments and oxidative stress are major secondary mechanisms that severely worsen muscle function in DMD. Here, we sought to determine whether germline reduction or ablation of sarcolipin (SLN), an inhibitor of sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA), improves muscle metabolism and ameliorates muscle pathology in the mdx mouse model of DMD. Glucose and insulin tolerance tests show that glucose clearance rate and insulin sensitivity were improved in the SLN haploinsufficient mdx (mdx:sln+/-) and SLN-deficient mdx (mdx:sln-/-) mice. The histopathological analysis shows that fibrosis and necrosis were significantly reduced in muscles of mdx:sln+/- and mdx:sln-/- mice. SR Ca2+ uptake, mitochondrial complex protein levels, complex activities, mitochondrial Ca2+ uptake and release, and mitochondrial metabolism were significantly improved, and lipid peroxidation and protein carbonylation were reduced in the muscles of mdx:sln+/- and mdx:sln-/- mice. These data demonstrate that reduction or ablation of SLN expression can improve muscle metabolism, reduce oxidative stress, decrease muscle pathology, and protects the mdx mice from glucose intolerance.


Assuntos
Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Proteolipídeos/antagonistas & inibidores , Proteolipídeos/biossíntese , Animais , Glicemia/genética , Glicemia/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Proteínas Musculares/genética , Estresse Oxidativo/fisiologia , Proteolipídeos/genética
8.
Arch Microbiol ; 203(7): 4189-4199, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34076737

RESUMO

Bacillus velezensis is widely known for its inherent biosynthetic potential to produce a wide range of bio-macromolecules and secondary metabolites, including polyketides (PKs) and siderophores, as well as ribosomally and non-ribosomally synthesized peptides. In the present study, we aimed to investigate the bio-macromolecules, such as proteins and peptides of Bacillus velezensis strains, namely A6 and P42 by whole-cell sequencing and highlighted the potential application in controlling phytopathogens. The bioactive compounds, specifically secondary metabolites, were characterized by whole-cell protein profiling, Thin-Layer Chromatography, Infra-Red Spectroscopy, Nuclear Magnetic Resonance, Gas Chromatograph and Electro Spray Liquid Chromatography. Gas Chromatography analysis revealed that the A6 and P42 strains exert different functional groups of compounds, such as aromatic ring, aliphatic, alkene, ketone, amine groups and carboxylic acid. Whole-cell protein profiling of A6 and P42 strains of B. velezensis by nano-ESI LC-MS/MS revealed the presence of 945 and 5303 proteins, respectively. The in vitro evaluation of crude extracts (10%) of A6 and P42 significantly inhibited the rice pathogen, Magnaporthe oryzae (MG01), whereas the cell-free culture filtrate (75%) of strain P42 showed 58.97% inhibition. Similarly, in vitro evaluation of crude extract (10%) of P42 strain inhibited bacterial blight of pomegranate pathogen, Xanthomonas axonopodis pv. punicae, which eventually resulted in a higher inhibition zone of 3 cm, whereas the cell-free extract (75%) of the same strain significantly suppressed the growth of the pathogen with an inhibition zone of 1.48 cm. From the results obtained, the crude secondary metabolites and cell-free filtrates (containing bio-macromolecules) of the strains A6 and P42 of B. velezensis can be employed for controlling the bacterial and fungal pathogens of crop plants.


Assuntos
Ascomicetos , Bacillus , Doenças das Plantas , Xanthomonas axonopodis , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Bacillus/química , Cromatografia Líquida , Oryza/microbiologia , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Punica granatum/microbiologia , Espectrometria de Massas em Tandem , Xanthomonas axonopodis/efeitos dos fármacos
9.
Sci Rep ; 11(1): 10553, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006931

RESUMO

Fibrosis is a hallmark of heart disease independent of etiology and is thought to contribute to impaired cardiac dysfunction and development of heart failure. However, the underlying mechanisms that regulate the differentiation of fibroblasts to myofibroblasts and fibrotic responses remain incompletely defined. As a result, effective treatments to mitigate excessive fibrosis are lacking. We recently demonstrated that the Hippo pathway effector Yes-associated protein (YAP) is an important mediator of myofibroblast differentiation and fibrosis in the infarcted heart. Yet, whether YAP activation in cardiac fibroblasts is sufficient to drive fibrosis, and how fibroblast YAP affects myocardial inflammation, a significant component of adverse cardiac remodeling, are largely unknown. In this study, we leveraged adeno-associated virus (AAV) to target cardiac fibroblasts and demonstrate that chronic YAP expression upregulated indices of fibrosis and inflammation in the absence of additional stress. YAP occupied the Ccl2 gene and promoted Ccl2 expression, which was associated with increased macrophage infiltration, pro-inflammatory cytokine expression, collagen deposition, and cardiac dysfunction in mice with cardiac fibroblast-targeted YAP overexpression. These results are consistent with other recent reports and extend our understanding of YAP function in modulating fibrotic and inflammatory responses in the heart.


Assuntos
Dependovirus/genética , Fibrose/patologia , Vetores Genéticos , Inflamação/genética , Miofibroblastos/metabolismo , Fatores de Transcrição/genética , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Ratos , Ratos Wistar
10.
Front Physiol ; 12: 647010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897454

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disease caused by the loss of dystrophin. DMD is associated with muscle degeneration, necrosis, inflammation, fatty replacement, and fibrosis, resulting in muscle weakness, respiratory and cardiac failure, and premature death. There is no curative treatment. Investigations on disease-causing mechanisms offer an opportunity to identify new therapeutic targets to treat DMD. An abnormal elevation of the intracellular calcium ( Ca i 2 + ) concentration in the dystrophin-deficient muscle is a major secondary event, which contributes to disease progression in DMD. Emerging studies have suggested that targeting Ca2+-handling proteins and/or mechanisms could be a promising therapeutic strategy for DMD. Here, we provide an updated overview of the mechanistic roles the sarcolemma, sarcoplasmic/endoplasmic reticulum, and mitochondria play in the abnormal and sustained elevation of Ca i 2 + levels and their involvement in DMD pathogenesis. We also discuss current approaches aimed at restoring Ca2+ homeostasis as potential therapies for DMD.

11.
Am J Physiol Heart Circ Physiol ; 320(1): H200-H210, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33216625

RESUMO

Sarcolipin (SLN) is an inhibitor of sarco/endoplasmic reticulum (SR) Ca2+-ATPase (SERCA) and expressed at high levels in the ventricles of animal models for and patients with Duchenne muscular dystrophy (DMD). The goal of this study was to determine whether the germline ablation of SLN expression improves cardiac SERCA function and intracellular Ca2+ (Ca2+i) handling and prevents cardiomyopathy in the mdx mouse model of DMD. Wild-type, mdx, SLN-haploinsufficient mdx (mdx:sln+/-), and SLN-deficient mdx (mdx:sln-/-) mice were used for this study. SERCA function and Ca2+i handling were determined by Ca2+ uptake assays and by measuring single-cell Ca2+ transients, respectively. Age-dependent disease progression was determined by histopathological examinations and by echocardiography in 6-, 12-, and 20-mo-old mice. Gene expression changes in the ventricles of mdx:sln+/- mice were determined by RNA-Seq analysis. SERCA function and Ca2+i cycling were improved in the ventricles of mdx:sln+/- mice. Fibrosis and necrosis were significantly decreased, and cardiac function was enhanced in the mdx:sln+/- mice until the study endpoint. The mdx:sln-/- mice also exhibited similar beneficial effects. RNA-Seq analysis identified distinct gene expression changes including the activation of the apelin pathway in the ventricles of mdx:sln+/- mice. Our findings suggest that reducing SLN expression is sufficient to improve cardiac SERCA function and Ca2+i cycling and prevent cardiomyopathy in mdx mice.NEW & NOTEWORTHY First, reducing sarcopolin (SLN) expression improves sarco/endoplasmic reticulum Ca2+ uptake and intracellular Ca2+ handling and prevents cardiomyopathy in mdx mice. Second, reducing SLN expression prevents diastolic dysfunction and improves cardiac contractility in mdx mice Third, reducing SLN expression activates apelin-mediated cardioprotective signaling pathways in mdx heart.


Assuntos
Cardiomiopatias/prevenção & controle , Haploinsuficiência , Proteínas Musculares/deficiência , Distrofia Muscular de Duchenne/complicações , Miocárdio/metabolismo , Proteolipídeos/deficiência , Animais , Apelina/genética , Apelina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Feminino , Fibrose , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Miocárdio/patologia , Necrose , Proteolipídeos/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Função Ventricular Esquerda
12.
Mol Ther ; 28(3): 845-854, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31981493

RESUMO

Loss of dystrophin leads to Duchenne muscular dystrophy (DMD). A pathogenic feature of DMD is the significant elevation of cytosolic calcium. Supraphysiological calcium triggers protein degradation, membrane damage, and eventually muscle death and dysfunction. Sarcoplasmic/endoplasmic reticulum (SR) calcium ATPase (SERCA) is a calcium pump that transports cytosolic calcium to the SR during excitation-contraction coupling. We hypothesize that a single systemic delivery of SERCA2a with adeno-associated virus (AAV) may improve calcium recycling and provide long-lasting benefits in DMD. To test this, we injected an AAV9 human SERCA2a vector (6 × 1012 viral genome particles/mouse) intravenously to 3-month-old mdx mice, the most commonly used DMD model. Immunostaining and western blot showed robust human SERCA2a expression in the heart and skeletal muscle for 18 months. Concomitantly, SR calcium uptake was significantly improved in these tissues. SERCA2a therapy significantly enhanced grip force and treadmill performance, completely prevented myocardial fibrosis, and normalized electrocardiograms (ECGs). Cardiac catheterization showed normalization of multiple systolic and diastolic hemodynamic parameters in treated mice. Importantly, chamber dilation was completely prevented, and ejection fraction was restored to the wild-type level. Our results suggest that a single systemic AAV9 SERCA2a therapy has the potential to provide long-lasting benefits for DMD.


Assuntos
Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/terapia , Expressão Gênica , Terapia Genética , Distrofia Muscular de Duchenne/complicações , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Administração Intravenosa , Animais , Dependovirus/genética , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Retículo Sarcoplasmático/metabolismo , Fatores de Tempo , Transdução Genética
13.
3 Biotech ; 10(1): 15, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31879579

RESUMO

Endophytes confer unique ecological advantages to their host plants. In this study, we have characterized the diversity of endophytic consortia associated with the GPU-28 (GPU) and Udurumallige (UM) finger millet varieties, which are resistant and susceptible to the blast disease, respectively. Whole genome metagenome sequencing of GPU and UM helped to identify 1029 species (includes obligate endophytes) of microbiota. Among them, 385 and 357 species were unique to GPU and UM, respectively. Remaining 287 species were common to both the varieties. Actinobacteria and other plant-growth promoting bacteria were abundant in GPU as compared to UM. Functional annotation of genes predicted from genomes of endophytes associated with GPU variety showed that many genes had functional role in stress response, secondary metabolism, aromatic compounds, glutathione, and cysteine synthesis pathways as compared to UM. Based on in vitro and in planta studies, Bacillus cereus and Paenibacillus spp. were found to be effective in suppressing the growth of blast disease pathogen Magnaporthe grisea (strain MG03). In the future, these strains could serve as potential biocontrol agents to reduce the incidence of blast disease in finger millet crop.

14.
Am J Physiol Cell Physiol ; 317(4): C813-C824, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31365291

RESUMO

Reduction in the expression of sarcolipin (SLN), an inhibitor of sarco(endo)plasmic reticulum (SR) Ca2+-ATPase (SERCA), ameliorates severe muscular dystrophy in mice. However, the mechanism by which SLN inhibition improves muscle structure remains unclear. Here, we describe the previously unknown function of SLN in muscle differentiation in Duchenne muscular dystrophy (DMD). Overexpression of SLN in C2C12 resulted in decreased SERCA pump activity, reduced SR Ca2+ load, and increased intracellular Ca2+ (Cai2+) concentration. In addition, SLN overexpression resulted in altered expression of myogenic markers and poor myogenic differentiation. In dystrophin-deficient dog myoblasts and myotubes, SLN expression was significantly high and associated with defective Cai2+ cycling. The dystrophic dog myotubes were less branched and associated with decreased autophagy and increased expression of mitochondrial fusion and fission proteins. Reduction in SLN expression restored these changes and enhanced dystrophic dog myoblast fusion during differentiation. In summary, our data suggest that SLN upregulation is an intrinsic secondary change in dystrophin-deficient myoblasts and could account for the Cai2+ mishandling, which subsequently contributes to poor myogenic differentiation. Accordingly, reducing SLN expression can improve the Cai2+ cycling and differentiation of dystrophic myoblasts. These findings provide cellular-level supports for targeting SLN expression as a therapeutic strategy for DMD.


Assuntos
Cálcio/metabolismo , Desenvolvimento Muscular/fisiologia , Proteínas Musculares/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Proteolipídeos/metabolismo , Animais , Diferenciação Celular/fisiologia , Cães , Distrofina/deficiência , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Mioblastos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
15.
Circ Heart Fail ; 12(3): e005529, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30798619

RESUMO

BACKGROUND: Proper dynamics of RNA polymerase II, such as promoter recruitment and elongation, are essential for transcription. PGC-1α (peroxisome proliferator-activated receptor [PPAR]-γ coactivator-1α), also termed PPARGC1a, is a transcriptional coactivator that stimulates energy metabolism, and PGC-1α target genes are downregulated in the failing heart. However, whether the dysregulation of polymerase II dynamics occurs in PGC-1α target genes in heart failure has not been defined. METHODS AND RESULTS: Chromatin immunoprecipitation-sequencing revealed that reduced promoter occupancy was a major form of polymerase II dysregulation on PGC-1α target metabolic gene promoters in the pressure-overload-induced heart failure model. PGC-1α-cKO (cardiac-specific PGC-1α knockout) mice showed phenotypic similarity to the pressure-overload-induced heart failure model in wild-type mice, such as contractile dysfunction and downregulation of PGC-1α target genes, even under basal conditions. However, the protein levels of PGC-1α were neither changed in the pressure-overload model nor in human failing hearts. Chromatin immunoprecipitation assays revealed that the promoter occupancy of polymerase II and PGC-1α was consistently reduced both in the pressure-overload model and PGC-1α-cKO mice. In vitro DNA binding assays using an endogenous PGC-1α target gene promoter sequence confirmed that PGC-1α recruits polymerase II to the promoter. CONCLUSIONS: These results suggest that PGC-1α promotes the recruitment of polymerase II to the PGC-1α target gene promoters. Downregulation of PGC-1α target genes in the failing heart is attributed, in part, to a reduction of the PGC-1α occupancy and the polymerase II recruitment to the promoters, which might be a novel mechanism of metabolic perturbations in the failing heart.


Assuntos
Insuficiência Cardíaca/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , Animais , Modelos Animais de Doenças , Regulação para Baixo , Camundongos , Camundongos Knockout , RNA Polimerase II/metabolismo
16.
Sci Rep ; 8(1): 16278, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30390022

RESUMO

Efficient, fast and new micro-analytical methods for characterization of ultrastructures of fungal spores with electron microscopy are very much required and essential. SEM analysis of biological materials, especially fungi, requires optimal preparation of the specimen and often requires the usage of dried samples which demands a challenging sample preparation. In the present investigation, we described a fast and improved method for the preparation of fungal specimen for scanning electron microscopy (SEM). The fungus, Curvularia lunata was grown on the surface of sterile Whatman No.1 filter paper which was overlaid on Potato Dextrose Agar (PDA) medium, gold coated immediately after removal from the growth medium and subjected to imaging. Generally, SEM imaging is done with samples that were fixed with chemical fixatives, dehydrated and gold coated specimens, but here we describe an easy and more efficient sample preparation for SEM which enabled enhanced image quality and precision visualization of fungal cells, especially the spores. The developed method has enabled the analysis of even the robust samples like fungal spores that to eliminating special temperature requirement. The ultimate goal was to develop an improved protocol/method applied to analysis of fungal spores with greater coverage about fungal specimen preparation. This method permits the use of rapid sample preparation and will allow us to imaging of individual spore or conidia structures in the context of fungal cell architecture which clarifies our understanding in fungal taxonomy/biology.


Assuntos
Fungos/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Manejo de Espécimes/métodos , Esporos Fúngicos/ultraestrutura , Fungos/classificação , Fungos/citologia , Reprodutibilidade dos Testes
17.
Int J Biol Macromol ; 111: 1238-1244, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29337104

RESUMO

Marine seaweeds contain a valuable source of functional bioactive polysaccharide and it plays main role for effective anticancer activity. The structural feature of SPs was studied through FT-IR and 1H NMR spectra analysis. The isolated SPs from A. spicifera contain 63.3% of total sugar, 21.9% of total sulfate and 12.6% of total uranic acid was found. The active F2 fraction molecular weight of SP was found to be 420 kDa. The sugar was composed of galactose (73.5%), xylose (9.2%), mannose (1.9%) and arabinose (10.9%). Further the SP showed DPPH free radical scavenging activity of 55.55% at 150 µg/mL and reducing power activity of 91.3% at 125 µg/mL. In the present study, the purified sulfated polysaccharide (fraction F2) were extracted, purified and characterized for red seaweed and evaluated for their potential anticancer activity of in A549 cell lines under in vitro condition. These polysaccharide fractions exhibited potential apoptotic effects on A549 cell lines.


Assuntos
Antioxidantes/química , Sequestradores de Radicais Livres/química , Polissacarídeos/química , Rodófitas/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/química , Compostos de Bifenilo/isolamento & purificação , Carboidratos/química , Carboidratos/isolamento & purificação , Sequestradores de Radicais Livres/isolamento & purificação , Galactose/química , Galactose/isolamento & purificação , Peso Molecular , Polissacarídeos/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfatos/química , Xilose/química
18.
Nat Commun ; 8(1): 1068, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29051551

RESUMO

Sarcolipin (SLN) is an inhibitor of the sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) and is abnormally elevated in the muscle of Duchenne muscular dystrophy (DMD) patients and animal models. Here we show that reducing SLN levels ameliorates dystrophic pathology in the severe dystrophin/utrophin double mutant (mdx:utr -/-) mouse model of DMD. Germline inactivation of one allele of the SLN gene normalizes SLN expression, restores SERCA function, mitigates skeletal muscle and cardiac pathology, improves muscle regeneration, and extends the lifespan. To translate our findings into a therapeutic strategy, we knock down SLN expression in 1-month old mdx:utr -/- mice via adeno-associated virus (AAV) 9-mediated RNA interference. The AAV treatment markedly reduces SLN expression, attenuates muscle pathology and improves diaphragm, skeletal muscle and cardiac function. Taken together, our findings suggest that SLN reduction is a promising therapeutic approach for DMD.


Assuntos
Cardiomiopatias/fisiopatologia , Regulação da Expressão Gênica/genética , Inativação Gênica , Terapia Genética , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/terapia , Proteolipídeos/genética , Animais , Cardiomiopatias/genética , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Proteínas Musculares/metabolismo , Distrofia Muscular de Duchenne/genética , Proteolipídeos/metabolismo , Interferência de RNA , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Utrofina/genética , Utrofina/metabolismo
19.
Circ Heart Fail ; 10(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28193718

RESUMO

BACKGROUND: In general, Ras proteins are thought to promote cardiac hypertrophy, an important risk factor for cardiovascular disease and heart failure. However, the contribution of different Ras isoforms has not been investigated. The objective of this study was to define the role of H- and K-Ras in modulating stress-induced myocardial hypertrophy and failure. METHODS AND RESULTS: We used H- and K-Ras gene knockout mice and subjected them to pressure overload to induce cardiac hypertrophy and dysfunction. We observed a worsened cardiac phenotype in Hras-/- mice, while outcomes were improved in Kras+/- mice. We also used a neonatal rat cardiomyocyte culture system to elucidate the mechanisms underlying these observations. Our findings demonstrate that H-Ras, but not K-Ras, promotes cardiomyocyte hypertrophy both in vivo and in vitro. This response was mediated in part through the phosphoinositide 3-kinase-AKT signaling pathway. Adeno-associated virus-mediated increase in AKT activation improved the cardiac function in pressure overloaded Hras null hearts in vivo. These findings further support engagement of the phosphoinositide 3-kinase-AKT signaling axis by H-Ras. CONCLUSIONS: Taken together, these findings indicate that H- and K-Ras have divergent effects on cardiac hypertrophy and heart failure in response to pressure overload stress.


Assuntos
Pressão Arterial , Cardiomegalia/prevenção & controle , Insuficiência Cardíaca/prevenção & controle , Miócitos Cardíacos/enzimologia , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/metabolismo , Animais , Animais Recém-Nascidos , Aorta Torácica/fisiopatologia , Aorta Torácica/cirurgia , Cardiomegalia/enzimologia , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática , Genótipo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Ligadura , Masculino , Camundongos Knockout , Miócitos Cardíacos/patologia , Fenótipo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas p21(ras)/deficiência , Proteínas Proto-Oncogênicas p21(ras)/genética , Interferência de RNA , Ratos Wistar , Transdução de Sinais , Fatores de Tempo , Transfecção
20.
PLoS One ; 10(2): e0115822, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25671318

RESUMO

The functional importance of threonine 5 (T5) in modulating the activity of sarcolipin (SLN), a key regulator of sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) pump was studied using a transgenic mouse model with cardiac specific expression of threonine 5 to alanine mutant SLN (SLNT5A). In these transgenic mice, the SLNT5A protein replaces the endogenous SLN in atria, while maintaining the total SLN content. The cardiac specific expression of SLNT5A results in severe cardiac structural remodeling accompanied by bi-atrial enlargement. Biochemical analyses reveal a selective downregulation of SR Ca2+ handling proteins and a reduced SR Ca2+ uptake both in atria and in the ventricles. Optical mapping analysis shows slower action potential propagation in the transgenic mice atria. Doppler echocardiography and hemodynamic measurements demonstrate a reduced atrial contractility and an impaired diastolic function. Together, these findings suggest that threonine 5 plays an important role in modulating SLN function in the heart. Furthermore, our studies suggest that alteration in SLN function can cause abnormal Ca2+ handling and subsequent cardiac remodeling and dysfunction.


Assuntos
Proteínas Musculares/genética , Mutação , Miocárdio/metabolismo , Miocárdio/patologia , Proteolipídeos/genética , Treonina/genética , Disfunção Ventricular/genética , Remodelação Ventricular/genética , Animais , Cálcio/metabolismo , Diástole/genética , Expressão Gênica , Átrios do Coração/metabolismo , Hemodinâmica , Camundongos , Camundongos Transgênicos , Proteínas Musculares/metabolismo , Especificidade de Órgãos/genética , Proteolipídeos/metabolismo , Retículo Sarcoplasmático/metabolismo , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA