Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1200926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342549

RESUMO

Introduction: Environmental enteropathy (EE), a chronic small intestine disease characterized by gut inflammation, is widely prevalent in low-income countries and is hypothesized to be caused by continuous exposure to fecal contamination. Targeted nutritional interventions using potential probiotic strains from fermented foods can be an effective strategy to inhibit enteric pathogens and prevent chronic gut inflammation. Methods: We isolated potential strains from fermented rice water and lemon pickle and investigated their cell surface properties, antagonistic properties, adhesion to HT-29 cells, and inhibition of pathogen adherence to HT-29 cells. Bacteriocin-like inhibitory substances (BLIS) were purified, and in vivo, survival studies in Caenorhabditis elegans infected with Salmonella enterica MW116733 were performed. We further checked the expression pattern of pro and anti-inflammatory cytokines (IL-6, IL8, and IL-10) in HT-29 cells supplemented with strains. Results: The strains isolated from rice water (RS) and lemon pickle (T1) were identified as Limosilactobacillus fermentum MN410703 and MN410702, respectively. Strains showed probiotic properties like tolerance to low pH (pH 3.0), bile salts up to 0.5%, simulated gastric juice at low pH, and binding to extracellular matrix molecules. Auto-aggregation of T1 was in the range of 85% and significantly co-aggregated with Klebsiella pneumoniae, S. enterica, and Escherichia coli at 48, 79, and 65%, respectively. Both strains had a higher binding affinity to gelatin and heparin compared to Bacillus clausii. Susceptibility to most aminoglycoside, cephalosporin, and macrolide classes of antibiotics was also observed. RS showed BLIS activity against K. pneumoniae, S. aureus, and S. enterica at 60, 48, and 30%, respectively, and the protective effects of BLIS from RS in the C. elegans infection model demonstrated a 70% survival rate of the worms infected with S. enterica. RS and T1 demonstrated binding efficiency to HT-29 cell lines in the 38-46% range, and both strains inhibited the adhesion of E. coli MDR and S. enterica. Upregulation of IL-6 and IL-10 and the downregulation of IL-8 were observed when HT-29 cells were treated with RS, indicating the immunomodulatory effects of the strain. Discussion: The potential strains identified could effectively inhibit enteric pathogens and prevent environmental enteropathy.

2.
Microbiol Resour Announc ; 9(29)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32675192

RESUMO

We report the draft genome sequence of a putative probiotic strain, Lactobacillus fermentum ASBT-2, isolated from domestic sewage in Kerala, India. The strain showed probiotic properties (tolerance to low pH and bile salts, binding to host matrix) and reduced the coliform count by 90% in a biofilter used to treat wastewater.

3.
Microbiol Resour Announc ; 8(27)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270207

RESUMO

We report the draft genome sequence of Escherichia coli ASBT-1, a representative of E. coli sequence type 155 (ST155), obtained from India. Considering the known wide variety of pathogenic and antibiotic resistance potentials, this strain should be of great interest for detailed comparative genomic analysis.

4.
Int J Biol Macromol ; 110: 608-615, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246876

RESUMO

Recent literature has suggested a novel symbiotic relationship between bacteriophage and metazoan host that provides antimicrobial defense protecting mucosal surface by binding to host matrix mucin glycoproteins. Here, we isolated and studied different bacteriophages that specifically interact with human extracellular matrix molecules such as fibronectin, gelatin, heparin and demonstrated their potency for protection to host against microbial infections. We showed that subpopulations of bacteriophages that work against clinical isolates of Escherichia coli can bind to pure gelatin, fibronectin and heparin and reduced bacterial load in human colon cell line HT29. The bacteriophages were characterized with respect to their genome sizes, melting curve patterns and host tropism (cross-reactivity with different hosts). Since, the bacteriophages are non-toxic to the host and can effectively reduce bacterial load in HT29 cell line their therapeutic potency against bacterial infection could be explored.


Assuntos
Bacteriófagos/metabolismo , Colo/metabolismo , Colo/virologia , Escherichia coli/virologia , Proteínas da Matriz Extracelular/metabolismo , Linhagem Celular Tumoral , Escherichia coli/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/terapia , Infecções por Escherichia coli/virologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...