Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(12): 4549-4563, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271945

RESUMO

KEY MESSAGE: A key genomic region was identified for resistance to FSR at 168 Mb on chromosome 6 in GWAS and haplotype regression analysis, which was validated by QTL mapping in two populations. Fusarium stalk rot (FSR) of maize is an economically important post-flowering stalk rot (PFSR) disease caused by Fusarium verticillioides. The pathogen invades the plant individually, or in combination with other stalk rot pathogens or secondary colonizers, thereby making it difficult to make accurate selection for resistance. For identification and validation of genomic regions associated with FSR resistance, a genome-wide association study (GWAS) was conducted with 342 maize lines. The panel was screened for FSR in three environments using standard artificial inoculation methodology. GWAS using the mixed linear model corrected for population structure and kinship was done, in which 290,626 SNPs from genotyping-by-sequencing were used. A total of 7 SNPs, five on chromosome 6 showing strong LD at 168 Mb, were identified to be associated with FSR. Haplotype regression analysis identified 32 haplotypes with a significant effect on the trait. In a QTL mapping experiment in two populations for validating the identified variants, QTLs were identified with confidence intervals having overlapped physical coordinates in both the populations on chromosome 6, which was closely located to the GWAS-identified variants on chromosome 6. It makes this genomic region a crucial one to further investigate the possibility of developing trait markers for deployment in breeding pipelines. It was noted that previously reported QTLs for other stalk rots in maize mapped within the same physical intervals of several haplotypes identified for FSR resistance in this study. The possibility of QTLs controlling broad-spectrum resistance for PFSR in general requires further investigation.


Assuntos
Fusarium , Humanos , Zea mays/genética , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Cromossomos Humanos Par 6 , Doenças das Plantas/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
2.
Front Plant Sci ; 12: 726767, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691105

RESUMO

Charcoal rot is a post-flowering stalk rot (PFSR) disease of maize caused by the fungal pathogen, Macrophomina phaseolina. It is a serious concern for smallholder maize cultivation, due to significant yield loss and plant lodging at harvest, and this disease is expected to surge with climate change effects like drought and high soil temperature. For identification and validation of genomic variants associated with charcoal rot resistance, a genome-wide association study (GWAS) was conducted on CIMMYT Asia association mapping panel comprising 396 tropical-adapted lines, especially to Asian environments. The panel was phenotyped for disease severity across two locations with high disease prevalence in India. A subset of 296,497 high-quality SNPs filtered from genotyping by sequencing was correcting for population structure and kinship matrices for single locus mixed linear model (MLM) of GWAS analysis. A total of 19 SNPs were identified to be associated with charcoal rot resistance with P-value ranging from 5.88 × 10-06 to 4.80 × 10-05. Haplotype regression analysis identified 21 significant haplotypes for the trait with Bonferroni corrected P ≤ 0.05. For validating the associated variants and identifying novel QTLs, QTL mapping was conducted using two F2:3 populations. Two QTLs with overlapping physical intervals, qMSR6 and qFMSR6 on chromosome 6, identified from two different mapping populations and contributed by two different resistant parents, were co-located with the SNPs and haplotypes identified at 103.51 Mb on chromosome 6. Similarly, several SNPs/haplotypes identified on chromosomes 3, 6 and 8 were also found to be physically co-located within QTL intervals detected in one of the two mapping populations. The study also noted that several SNPs/haplotypes for resistance to charcoal rot were located within physical intervals of previously reported QTLs for Gibberella stalk rot resistance, which opens up a new possibility for common disease resistance mechanisms for multiple stalk rots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA