Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Bioeng Biomech ; 24(3): 107-118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38314484

RESUMO

PURPOSE: Conventional orthodontic treatment with stainless steel orthodontic wires may be detrimental to oral health, as it contributes to demineralized lesions and increases adhesion and bacterial biofilm formation, which contributes to cavity development. An alternative that has been investigated to reduce the side effects of orthodontic treatment is the use of coating materials with antimicrobial nanoparticles. This study aims to evaluate the antiadherent and antibacterial properties of TiO2-coated and TiO2:Ag-coated stainless steel orthodontic wires against S. mutans bacteria. METHODS: In the sol-gel method, TiO2:Ag thin films were deposited on stainless steel orthodontic wires. Coated archwires were analyzed for their antibacterial and antiadherent properties. The evaluation of Streptococcus mutans adhesion to the orthodontic wires' surface was conducted according to the type of coating used, biofilm formation assay, and measurement of the pH of the bacterial community. RESULTS: In the microbiological test, the TiO2:Ag coatings revealed a statistically significant difference in terms of microbial adhesion and biofilm formation by Streptococcus mutans. The TiO2:Ag coating on stainless steel wire increased pH levels in the saliva environment. CONCLUSIONS: It can be concluded that antimicrobial orthodontic wires coated with silver TiO2 nanoparticles using the sol-gel thin film are a promising choice for improving orthodontic treatment.

2.
Materials (Basel) ; 13(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707959

RESUMO

In this literature review, the current state-of-art of coatings for orthodontic archwires' increasing antimicrobial and relevant mechanical properties, such as surface topography, friction or corrosion resistance, has been presented. There is a growing request for orthodontic appliances, therefore, most researchers focus on innovative functional coatings to cover orthodontic archwires and brackets. Orthodontic appliances are exposed to the unfavorable oral cavity environment, consisting of saliva flow, food, temperature and appliance force. As a consequence, friction or biocorrosion processes may occur. This can affect the functionality of the orthodontic elements, causing changes in their microstructure, surface topography and mechanical properties. Furthermore, the material which the orthodontic archwire is made from is of particular importance in terms of the possible corrosion resistance. This is especially important for patients who are hypersensitive to metals, for example, nickel, which causes allergic reactions. In the literature, there are some studies, carried out in vitro and in vivo, mostly examining the antibacterial, antiadherent, mechanical and roughness properties of functional coatings. They are clinically acceptable but still some properties have to be studied and be developed for better results. In this paper the influence of additives such as nanoparticles of silver and nitrogen-doped TiO2 applied on orthodontic brackets by different methods on the antimicrobial properties was analyzed. Future improvement of coating techniques as well as modification of the archwire composition can reduce the release of nickel ions and eliminate friction and bacterial adhesion problems, thus accelerating treatment time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...