RESUMO
Harvest residue management is a key issue for the sustainability of Eucalyptus plantations established on poor soils. Soil microbial communities contribute to soil fertility by the decomposition of the organic matter (OM), but little is known about the effect of whole-tree harvesting (WTH) in comparison to stem only harvesting (SOH) on soil microbial functional diversity in Eucalyptus plantations. We studied the effects of harvest residue management (branches, leaves, bark) of Eucalyptus grandis trees on soil enzymatic activities and community-level physiological profiles in a Brazilian plantation. We measured soil microbial enzymatic activities involved in OM decomposition and we compared the community level physiological profiles (CLPP) of the soil microbes in WTH and SOH plots. WTH decreased enzyme activities and catabolic potential of the soil microbial community. Furthermore, these negative effects on soil functional diversity were mainly observed below the 0-5 cm layer (5-10 and 10-20 cm), suggesting that WTH can be harmful to the soil health in these plantations.
Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Produção Agrícola/métodos , Eucalyptus/química , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/análise , Brasil , Eucalyptus/crescimento & desenvolvimento , Microbiota , Caules de Planta/químicaRESUMO
The patterns of the distribution of fungal species and their potential interactions with trees remain understudied in Neotropical rainforests, which harbor more than 16,000 tree species, mostly dominated by endomycorrhizal trees. Our hypothesis was that tree species shape the non-mycorrhizal fungal assemblages in soil and litter and that the diversity of fungal communities in these two compartments is partly dependent on the coverage of trees in the Neotropical rainforest. In French Guiana, a long-term plantation and a natural forest were selected to test this hypothesis. Fungal ITS1 regions were sequenced from soil and litter samples from within the vicinity of tree species. A broad range of fungal taxa was found, with 42 orders and 14 classes. Significant spatial heterogeneity in the fungal communities was found without strong variation in the species richness and evenness among the tree plots. However, tree species shaped the fungal assemblages in the soil and litter, explaining up to 18 % of the variation among the communities in the natural forest. These results demonstrate that vegetation cover has an important effect on the structure of fungal assemblages inhabiting the soil and litter in Amazonian forests, illustrating the relative impact of deterministic processes on fungal community structures in these highly diverse ecosystems.