Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(22)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37314036

RESUMO

The chemical synthesis of (CdSe)13 magic-sized clusters (MSCs) allows the replacement of host atoms by individual transition metals such as Mn. By analyzing the spectral fingerprints of the Mn2+ photoluminescence (PL) in MSCs with different dopant concentrations, we are able to distinguish between single Mn2+ ions and coupled Mn2+ pairs. In case of Mn2+ pair emission, temperature-dependent studies show a pronounced red shift, followed by a distinct blue shift of the PL energy upon heating. This is related to a spin ladder formation of the ground and excited states due to Mn2+-Mn2+ exchange interaction at cryogenic temperatures, which is assumed to vanish at higher temperatures. In contrast, single Mn2+ ion PL exhibits a unique redshift with increasing temperature, which can be attributed to a particularly strong coupling to vibronic modes due to the ultimate small size of the MSCs.

2.
Nanotechnology ; 34(28)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040718

RESUMO

Transition metal dichalcogenide (TMDC) monolayers with their direct band gap in the visible to near-infrared spectral range have emerged over the past years as highly promising semiconducting materials for optoelectronic applications. Progress in scalable fabrication methods for TMDCs like metal-organic chemical vapor deposition (MOCVD) and the ambition to exploit specific material properties, such as mechanical flexibility or high transparency, highlight the importance of suitable device concepts and processing techniques. In this work, we make use of the high transparency of TMDC monolayers to fabricate transparent light-emitting devices (LEDs). MOCVD-grown WS2is embedded as the active material in a scalable vertical device architecture and combined with a silver nanowire (AgNW) network as a transparent top electrode. The AgNW network was deposited onto the device by a spin-coating process, providing contacts with a sheet resistance below 10 Ω sq-1and a transmittance of nearly 80%. As an electron transport layer we employed a continuous 40 nm thick zinc oxide (ZnO) layer, which was grown by atmospheric pressure spatial atomic layer deposition (AP-SALD), a precise tool for scalable deposition of oxides with defined thickness. With this, LEDs with an average transmittance over 60% in the visible spectral range, emissive areas of several mm2and a turn-on voltage of around 3 V are obtained.

3.
Nanotechnology ; 34(20)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745916

RESUMO

Structural defects in transition metal dichalcogenide (TMDC) monolayers (ML) play a significant role in determining their (opto)electronic properties, triggering numerous efforts to control defect densities during material growth or by post-growth treatments. Various types of TMDC have been successfully deposited by MOCVD (metal-organic chemical vapor deposition), which is a wafer-scale deposition technique with excellent uniformity and controllability. However, so far there are no findings on the extent to which the incorporation of defects can be controlled by growth parameters during MOCVD processes of TMDC. In this work, we investigate the effect of growth temperature and precursor ratio during MOCVD of tungsten diselenide (WSe2) on the growth of ML domains and their impact on the density of defects. The aim is to find parameter windows that enable the deposition of WSe2ML with high crystal quality, i.e. a low density of defects. Our findings confirm that the growth temperature has a large influence on the crystal quality of TMDC, significantly stronger than found for the W to Se precursor ratio. Raising the growth temperatures in the range of 688 °C to 791 °C leads to an increase of the number of defects, dominating photoluminescence (PL) at low temperatures (5.6 K). In contrast, an increase of the molar precursor ratio (DiPSe/WCO) from 1000 up to 100 000 leads to less defect-related PL at low temperatures.

4.
ACS Appl Mater Interfaces ; 14(30): 35184-35193, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35852455

RESUMO

A promising strategy toward ultrathin, sensitive photodetectors is the combination of a photoactive semiconducting transition-metal dichalcogenide (TMDC) monolayer like MoS2 with highly conductive graphene. Such devices often exhibit a complex and contradictory photoresponse as incident light can trigger both photoconductivity and photoinduced desorption of molecules from the surface. Here, we use metal-organic chemical vapor deposition (MOCVD) to directly grow MoS2 on top of graphene that is deposited on a sapphire wafer via chemical vapor deposition (CVD) for realizing graphene-MoS2 photodetectors. Two-color optical pump-electrical probe experiments allow for separation of light-induced carrier transfer across the graphene-MoS2 heterointerface from adsorbate-induced effects. We demonstrate that adsorbates strongly modify both magnitude and sign of the photoconductivity. This is attributed to a change of the graphene doping from p- to n-type in case adsorbates are being desorbed, while in either case, photogenerated electrons are transferred from MoS2 to graphene. This nondestructive probing method sheds light on the charge carrier transfer mechanisms and the role of adsorbates in two-dimensional (2D) heterostructure photodetectors.

5.
J Phys Chem Lett ; 13(14): 3217-3223, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35377657

RESUMO

Spectroscopic methods enabling real-time monitoring of dynamic surface processes are a prerequisite for identifying how a catalyst triggers a chemical reaction. We present an in situ photoluminescence spectroscopy approach for probing the thermocatalytic 2-propanol oxidation over mesostructured Co3O4 nanowires. Under oxidative conditions, a distinct blue emission at ∼420 nm is detected that increases with temperature up to 280 °C, with an intermediate maximum at 150 °C. Catalytic data gained under comparable conditions show that this course of photoluminescence intensity precisely follows the conversion of 2-propanol and the production of acetone. The blue emission is assigned to the radiative recombination of unbound acetone molecules, the n ↔ π* transition of which is selectively excited by a wavelength of 270 nm. These findings open a pathway for studying thermocatalytic processes via in situ photoluminescence spectroscopy, thereby gaining information about the performance of the catalyst and the formation of intermediate products.

6.
Materials (Basel) ; 15(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35268857

RESUMO

LEDs based on planar InGaN/GaN heterostructures define an important standard for solid-state lighting. However, one drawback is the polarization field of the wurtzite heterostructure impacting both electron-hole overlap and emission energy. Three-dimensional core-shell microrods offer field-free sidewalls, thus improving radiative recombination rates while simultaneously increasing the light-emitting area per substrate size. Despite those promises, microrods have still not replaced planar devices. In this review, we discuss the progress in device processing and analysis of microrod LEDs and emphasize the perspectives related to the 3D device architecture from an applications point of view.

7.
Materials (Basel) ; 15(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35329655

RESUMO

Graphene combines high conductivity (sheet resistance down to a few hundred Ω/sq and even less) with high transparency (>90%) and thus exhibits a huge application potential as a transparent conductive electrode in gallium nitride (GaN)-based light-emitting diodes (LEDs), being an economical alternative to common indium-based solutions. Here, we present an overview of the state-of-the-art graphene-based transparent conductive electrodes in GaN-based LEDs. The focus is placed on the manufacturing progress and the resulting properties of the fabricated devices. Transferred as well as directly grown graphene layers are considered. We discuss the impact of graphene-based transparent conductive electrodes on current spreading and contact resistance, and reveal future challenges and perspectives on the use of graphene in GaN-based LEDs.

8.
J Chem Phys ; 156(5): 054707, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35135270

RESUMO

A Fano resonance, as often observed in scattering, absorption, or transmission experiments, arises from quantum interference between a discrete optical transition and a continuous background. Here, we present a temperature-dependent study on Fano resonances observed in photoluminescence from flakes of the layered semiconductor antiferromagnet chromium thiophosphate (CrPS4). Two Fano resonances with a distinctly different temperature dependence were identified. The continuous background that is responsible for the Fano resonances is attributed to the d-d transition of the optically active Cr3+ center, predominantly the spin-forbidden 2Eg → 4A2g transition with contributions of the broad-band 4T2g → 4A2g transition. The discrete states that interfere with this continuous background are suggested to arise from localized atomic phosphorus. A model idea for explaining the individual temperature dependence of the Fano resonances is presented.

9.
Materials (Basel) ; 14(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34832243

RESUMO

Ferroelectric materials have gained high interest for photovoltaic applications due to their open-circuit voltage not being limited to the band gap of the material. In the past, different lead-based ferroelectric perovskite thin films such as Pb(Zr,Ti)O3 (Pb,La)(Zr,Ti)O3 and PbTiO3 were investigated with respect to their photovoltaic efficiency. Nevertheless, due to their high band gaps they only absorb photons in the UV spectral range. The well-known ferroelectric PbFe0.5Nb0.5O3 (PFN), which is in a structure similar to the other three, has not been considered as a possible candidate until now. We found that the band gap of PFN is around 2.75 eV and that the conductivity can be increased from 23 S/µm to 35 S/µm during illumination. The relatively low band gap value makes PFN a promising candidate as an absorber material.

10.
Nano Lett ; 21(21): 9085-9092, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34672607

RESUMO

Quantum-confined nanostructures of CsPbBr3 with luminescence quantum efficiencies approaching unity have shown tremendous potential for lighting and quantum light applications. In contrast to CsPbBr3 quantum dots, where the fine structure of the emissive exciton state has been intensely discussed, the relationship among lattice orientation, shape anisotropy, and exciton fine structure in lead halide nanoplatelets has not yet been established. In this work, we investigate the fine structure of the bright triplet exciton of individual CsPbBr3 nanoplatelets by polarization-resolved micro- and magnetophotoluminescence spectroscopy at liquid helium temperature and find a large zero-field splitting of up to 2.5 meV. A unique relation between the crystal structure and the photoluminescence emission confirms the existence of two distinct crystal configurations in such nanoplatelets with different alignments of the crystal axes with respect to the nanoplatelet facets. Polarization-resolved experiments eventually allow us to determine the absolute orientation of an individual nanoplatelet on the substrate purely by optical means.

11.
ACS Nano ; 15(8): 13579-13590, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34339182

RESUMO

The polarization of photoluminescence emitted from anisotropic nanocrystals directly reflects the symmetry of the eigenstates involved in the recombination process and can thus be considered as a characteristic feature of a nanocrystal. We performed polarization resolved magneto-photoluminescence spectroscopy on single colloidal Mn2+:CdSe/CdS core-shell quantum dots of wurtzite crystal symmetry. At zero magnetic field, a distinct linear polarization pattern is observed, while applying a magnetic field enforces circularly polarized emission with a characteristic saturation value below 100%. These polarization features are shown to act as a specific fingerprint of each individual nanocrystal. A model considering the orientation of the crystal c⃗ axis with respect to the optical axis and the magnetic field and taking into account the impact of magnetic doping is introduced and quantitatively explains our findings. We demonstrate that a careful analysis of the polarization state of single nanocrystal emission using the full set of Stokes parameters allows for identification of the complete three-dimensional orientation of the crystal anisotropy axis of an individual nanoobject in lab coordinates.

13.
RSC Adv ; 11(54): 33905-33915, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35497307

RESUMO

In this work the photoluminescence (PL) of Co x Fe3-x O4 spinel oxide nanoparticles under pulsed UV laser irradiation (λ exc = 270 nm) is investigated for varying Co/Fe ratios (x = 0.4⋯2.5). A broad emission in the green spectral range is observed, exhibiting two maxima at around 506 nm, which is dominant for Fe-rich nanoparticles (x = 0.4, 0.9), and at around 530 nm, that is more pronounced for Co-rich nanoparticles (x > 1.6). As examinations in different atmospheres show that the observed emission reacts sensitively to the presence of water, it is proposed that the emission is mainly caused by OH groups with terminal or bridging metal-O bonds on the Co x Fe3-x O4 surface. Raman spectroscopy supports that the emission maximum at 506 nm corresponds to terminal OH groups bound to metal cations on tetrahedral sites (i.e., Fe3+), while the maximum around 530 nm corresponds to terminal OH groups bound to metal cations on octahedral sites (i.e., Co3+). Photoinduced dehydroxylation shows that OH groups can be removed on Fe-rich nanoparticles more easily, leading to a conversion process and the formation of new OH groups with different bonds to the surface. As such behavior is not observed for Co x Fe3-x O4 with x > 1.6, we conclude that the OH groups are more stable against dehydroxylation on Co-rich nanoparticles. The higher OH stability is expected to lead to a higher catalytic activity of Co-rich cobalt ferrites in the electrochemical generation of oxygen.

14.
Nanoscale Adv ; 3(20): 5830-5840, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36132682

RESUMO

The escalated photocatalytic (PC) efficiency of the visible light absorber Ba-doped BiFe0.95Mn0.05O3 (BFM) nanoparticles (NPs) as compared to BiFeO3 (BFO) NPs is reported for the degradation of the organic pollutants rhodamine B and methyl orange. 1 mol% Ba-doped-BFM NPs degrade both dyes within 60 and 25 minutes under UV + visible illumination, respectively. The Ba and Mn co-doping up to 5 mol% in BFO NPs increases the specific surface area, energy of d-d transitions, and PC efficiency of the BFO NPs. The maximum PC efficiency found in 1 mol% Ba doped BFM NPs is attributed to a cooperative effect of factors like its increased light absorption ability, large surface area, active surface, reduced recombination of charge carriers, and spontaneous polarization to induce charge carrier separation. The 1 mol% Ba and 5 mol% Mn co-incorporation is found to be the optimum dopant concentration for photocatalytic applications. These properties of co-doped BFO NPs can, e.g., be exploited in the field of water splitting.

15.
Sci Rep ; 10(1): 12938, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737382

RESUMO

The integration of graphene into CMOS compatible Ge technology is in particular attractive for optoelectronic devices in the infrared spectral range. Since graphene transfer from metal substrates has detrimental effects on the electrical properties of the graphene film and moreover, leads to severe contamination issues, direct growth of graphene on Ge is highly desirable. In this work, we present recipes for a direct growth of graphene on Ge via thermal chemical vapor deposition (TCVD) and plasma-enhanced chemical vapor deposition (PECVD). We demonstrate that the growth temperature can be reduced by about 200 °C in PECVD with respect to TCVD, where usually growth occurs close to the melting point of Ge. For both, TCVD and PECVD, hexagonal and elongated morphology is observed on Ge(100) and Ge(110), respectively, indicating the dominant role of substrate orientation on the shape of graphene grains. Interestingly, Raman data indicate a compressive strain of ca. - 0.4% of the graphene film fabricated by TCVD, whereas a tensile strain of up to + 1.2% is determined for graphene synthesized via PECVD, regardless the substrate orientation. Supported by Kelvin probe force measurements, we suggest a mechanism that is responsible for graphene formation on Ge and the resulting strain in TCVD and PECVD.

16.
Nat Commun ; 11(1): 4127, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807786

RESUMO

The fundamental bandgap Eg of a semiconductor-often determined by means of optical spectroscopy-represents its characteristic fingerprint and changes distinctively with temperature. Here, we demonstrate that in magic sized II-VI clusters containing only 26 atoms, a pronounced weakening of the bonds occurs upon optical excitation, which results in a strong exciton-driven shift of the phonon spectrum. As a consequence, a drastic increase of dEg/dT (up to a factor of 2) with respect to bulk material or nanocrystals of typical size is found. We are able to describe our experimental data with excellent quantitative agreement from first principles deriving the bandgap shift with temperature as the vibrational entropy contribution to the free energy difference between the ground and optically excited states. Our work demonstrates how in small nanoparticles, photons as the probe medium affect the bandgap-a fundamental semiconductor property.

17.
Nano Lett ; 20(3): 1896-1906, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31999124

RESUMO

One of the most prominent signatures of transition-metal doping in colloidal nanocrystals is the formation of charge carrier-induced magnetization of the dopant spin sublattice, called exciton magnetic polaron (EMP). Understanding the direction of EMP formation, however, is still a major obstacle. Here, we present a series of temperature-dependent photoluminescence studies on single colloidal Mn2+:CdSe/CdS core/shell quantum dots (QDs) performed in a vector magnetic field providing a unique insight into the interaction between individual excitons and numerous magnetic impurities. The energy of the QD emission and its full width at half-maximum are controlled by the interplay of EMP formation and statistical magnetic fluctuations, in excellent agreement with theory. Most important, we give the first direct demonstration that anisotropy effects-hypothesized for more than a decade-dominate the direction of EMP formation. Our findings reveal a pathway for directing the orientation of optically induced magnetization in colloidal nanocrystals.

18.
J Chem Phys ; 151(22): 224708, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31837672

RESUMO

The intentional incorporation of transition metal impurities into colloidal semiconductor nanocrystals allows an extension of the host material's functionality. While dopant incorporation has been extensively investigated in zero-dimensional quantum dots, the substitutional replacement of atoms in two-dimensional (2D) nanostructures by magnetic dopants has been reported only recently. Here, we demonstrate the successful incorporation of Co2+ ions into the shell of CdSe/CdS core/shell nanoplatelets, using these ions (i) as microscopic probes for gaining distinct structural insights and (ii) to enhance the magneto-optical functionality of the host material. Analyzing interatomic Co2+ ligand field transitions, we conclude that Co2+ is incorporated into lattice sites of the CdS shell, and effects such as diffusion of dopants into the CdSe core or diffusion of the dopants out of the heterostructure causing self-purification play a minor role. Taking advantage of the absorption-based technique of magnetic circular dichroism, we directly prove the presence of sp-d exchange interactions between the dopants and the band charge carriers in CdSe/Co2+:CdS heteronanoplatelets. Thus, our study not only demonstrates magneto-optical functionality in 2D nanocrystals by Co2+ doping but also shows that a careful choice of the dopant type paves the way for a more detailed understanding of the impurity incorporation process into these novel 2D colloidal materials.

19.
ACS Appl Mater Interfaces ; 11(25): 22612-22620, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31244025

RESUMO

Red ionic iridium-based transition metal complex light-emitting electrochemical cells (iTMC-LECs) with emission centered at ca. 650 nm, maximum efficiency of 0.3%, maximum brightness above 650 cd m-2, and device lifetime well above 200 and 33 h at brightness levels of 10 and 210 cd m-2, respectively, are realized by the introduction of a p-type polymer interface to the standard design of [Ir(ppy)2(pbpy)]+[PF6]- (Hppy = 2-phenylpyridine, pbpy = 6-phenyl-2,2'-bipyridine) iTMC-LEC. The unexpected color shift from yellow to red is studied in detail with respect to operation conditions and material combination. The experimental data suggest that either exciplex formation or subordinate, usually suppressed optical transitions of the iTMC might become activated by the introduced interface, causing the pronounced red shift of the peak emission wavelength.

20.
Nanoscale ; 11(17): 8372-8379, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30984945

RESUMO

2D semiconductors represent an exciting new material class with great potential for optoelectronic devices. In particular, WS2 monolayers are promising candidates for light-emitting devices (LEDs) due to their direct band gap with efficient recombination in the red spectral range. Here, we present a novel LED architecture by embedding exfoliated WS2 monolayer flakes into a vertical p-n layout using organic p- and inorganic n-supporting layers. Laser lithography was applied to define the current path perpendicular to the WS2 flake. The devices exhibit rectifying behavior and emit room temperature electroluminescence with luminance up to 50 cd m-2 in the red spectral range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...