Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 60(14): 4759-4773, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738824

RESUMO

Purpose: Reaggregates from E6 embryonic chicken retina exhibit areas corresponding to an inner plexiform layer (IPL), which presents an ideal in vitro model to test conditions and constraints of cholinergic and glutamatergic network formation, providing a basis for retinal tissue engineering. Here, we show that ipl formation is regulated by cholinergic starburst amacrine cells (SACs), a glial scaffold and by L-glutamate. Methods: Rosetted spheroids were cultured in absence or presence of 0.2 to 0.4 mM L-glutamate and analyzed by immuno- and enzyme histochemistry, proliferation, and apoptosis assays. Results: After 2 days in vitro (div), ipl formation was announced by acetylcholinesterase+ (AChE) and choline acetyltransferase+ (ChAT) cells. Individual vimentin+ or transitin+ Müller glial cell precursors (MCPs) in ipl centers coexpressed ChAT. Comparable to in vivo, pairwise arranged ChAT+ SACs formed two laminar subbands. Projections of calretinin+ amacrine cells (ACs) into ipl associated with MCP processes. In L-glutamate-, or NMDA-treated spheroids ipls were disrupted, including loss of SACs and MCs; coincubation with NMDA receptor inhibitor MK-801 prevented these effects. Also, many Pax6+ cells, comprising most ACs, were lost, while rho4D2+ rod photoreceptors were increased. Cell proliferation was slightly increased, while apoptosis remained unaffected. Conclusions: This demonstrated: (1) a far-advanced differentiation of an IPL in retinal spheroids, as never described before; (2) ipl sublamination was initiated by cholinergic precursor cells, which-functioning as "ipl founder cells"-(3) gave rise to neurons and glial cells; (4) these SACs and MCPs together organized ipl formation; and (5) this process was counteracted by NMDA-dependent glutamate actions.


Assuntos
Diferenciação Celular/fisiologia , Colinérgicos/farmacologia , Células Ependimogliais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Retina/embriologia , Transdução de Sinais/fisiologia , Esferoides Celulares/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Embrião de Galinha , Colina O-Acetiltransferase/metabolismo , Crioultramicrotomia , Ácido Glutâmico/farmacologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Neurônios Retinianos/citologia , Esferoides Celulares/metabolismo , Fixação de Tecidos , Vimentina/metabolismo
2.
Exp Eye Res ; 134: 111-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25686916

RESUMO

Gliotoxic responses complicate human eye diseases, the causes of which often remain obscure. Here, we activated Müller cells (MCs) by the gliotoxin DL-α-aminoadipate (AAA) and assayed possible protective effects by pigment epithelium-derived factor (PEDF) in RPE-free retinal explants of the E6 chick embryo. These models are suited to analyze gliotoxic reactions in vitro, since the avian retina contains only Müller cells (MCs) as glial components, and the RPE-free explants are devoid of a major PEDF source. ChAT- and AChE-immunohistochemistry (IHC) revealed that AAA treatment disrupted the differentiation of cholinergic amacrine cells in the inner plexiform layer. At the applied concentration of 1 mM AAA, apoptosis of MCs was slightly increased, as shown by TUNEL and caspase-3 activity assays. Concomitantly, cell-free gaps emerged in the middle of the retina, where MCs were swollen and amassed glutamine synthetase (shown by GS and Vimentin IHC). AAA treatment strongly activated MCs, as shown by GFAP IHC, and by an increase of stress-related catalase activity. Remarkably, nearly all effects of AAA on MCs were effectively counter-balanced by 50 ng/ml PEDF co-treatment, as also shown by RT-PCR. These findings suggest that supplementation with PEDF can protect the retina against gliotoxic attacks. Further studies should establish whether PEDF similarly protects a gliotoxic human retina.


Assuntos
Ácido 2-Aminoadípico/toxicidade , Células Ependimogliais/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/toxicidade , Proteínas do Olho/farmacologia , Gliose/prevenção & controle , Fatores de Crescimento Neural/farmacologia , Retina/embriologia , Serpinas/farmacologia , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Embrião de Galinha , Células Ependimogliais/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Gliose/patologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Técnicas de Cultura de Órgãos , Estresse Oxidativo , Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
J Comp Neurol ; 520(14): 3181-93, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22886733

RESUMO

Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) are the decisive enzymatic activities regulating the availability of acetylcholine (ACh) at a given synaptic or nonsynaptic locus. The only cholinergic cells of the mature inner retina are the so-called starburst amacrine cells (SACs). A type-I SAC, found at the outer border of the inner plexiform layer (IPL), forms a synaptic subband "a" within the IPL, while a type-II SAC located at the inner IPL border projects into subband "d." Applying immunohistochemistry for ChAT and AChE on sections of the chicken retina, we here have revealed intricate relationships of how retinal networks became dominated by AChE or by ChAT reactivities. AChE+ cells were first detectable in an embryonic day (E)4 retina, while ChAT appeared 1 day later in the very same cells; at this stage all are Brn3a+, a marker for ganglion cells (GCs). On either side of a faint AChE+ band, indicating the future IPL, pairs of ChAT+ /AChE- /Brn3a- cells appeared between E7/8. Type-I cells had increased ChAT and lost AChE; type-II cells presented less ChAT, but some AChE on their surfaces. Direct neighbors of SACs tended to express much AChE. Along with maturation, subband "a" presented more ChAT but less AChE; in subband "d" this pattern was reversed. In conclusion, the two retinal cholinergic networks segregate out from one cell pool, become locally opposed to each other, and become dominated by either synthesis or degradation of ACh. These "cholinergic developmental divergences" may also have significant physiologic consequences.


Assuntos
Neurônios Colinérgicos/citologia , Retina/citologia , Retina/embriologia , Vias Visuais/citologia , Vias Visuais/embriologia , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Biomarcadores/metabolismo , Embrião de Galinha , Galinhas , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Fator de Transcrição Brn-3A/metabolismo
4.
Chromosome Res ; 19(2): 165-82, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21249442

RESUMO

We used chicken retinospheroids (RS) to study the nuclear architecture of vertebrate cells in a three-dimensional (3D) cell culture system. The results showed that the different neuronal cell types of RS displayed an extreme form of radial nuclear organization. Chromatin was arranged into distinct radial zones which became already visible after DAPI staining. The distinct zones were enriched in different chromatin modifications and in different types of chromosomes. Active isoforms of RNA polymerase II were depleted in the outermost zone. Also chromocenters and nucleoli were radially aligned in the nuclear interior. The splicing factor SC35 was enriched at the central zone and did not show the typical speckled pattern of distribution. Evaluation of neuronal and non-neuronal chicken tissues showed that the highly ordered form of radial nuclear organization was also present in neuronal chicken tissues. Furthermore, the data revealed that the neuron-specific nuclear organization was remodeled when cells spread on a flat substrate. Monolayer cultures of a chicken cell line did not show this extreme form of radial organization. Rather, such monolayer cultures displayed features of nuclear organization which have been described before for many different types of monolayer cells. The finding that an extreme form radial nuclear organization, which has not been described before, is present in RS and tissues, but not in cells spread on a flat substrate, suggests that it would be important to complement studies on nuclear architecture performed with monolayer cells by studies on 3D cell culture systems and tissues.


Assuntos
Núcleo Celular/ultraestrutura , Neurônios/ultraestrutura , Animais , Técnicas de Cultura de Células/métodos , Galinhas , Cromatina , Cromossomos , Neurônios/citologia
5.
Eur J Neurosci ; 26(6): 1560-74, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17880391

RESUMO

For future retinal tissue engineering, it is essential to understand formation of retinal tissue in a 'cell-by-cell' manner, as can be best studied in retinal reaggregates. In avians, complete laminar spheres can be produced, with ganglion cells internally and photoreceptors at the surface; a similar degree of retinal reconstruction has not been achieved for mammals. Here, we have studied self-organizing potencies of retinal cells from neonatal gerbil retinae to form histotypic spheroids up to 15 days in culture (R-spheres). Shortly after reaggregation, a first sign of tissue organization was detected by use of an amacrine cell (AC)-specific calretinin (CR) antibody. These cells sorted out into small clusters and sent unipolar processes towards the centre of each cluster. Thereby, inner cell-free spaces developed into inner plexiform layer (IPL)-like areas with extended parallel CR(+) fibres. Occasionally, IPL areas merged to combine an 'inner half retina', whereby ganglion cells (GCs) occupied the outer sphere surface. This tendency was much improved in the presence of supernatants from retinal pigmented cells (RPE-spheres), e.g. cell organization and proliferation was much increased, and cell death shortened. As shown by several markers, a perfect outer ring was formed by GCs and displaced ACs, followed by a distinct IPL and 1-2 rows of ACs internally. The inner core of RPE spheres consisted of horizontal and possibly bipolar cells, while immunostaining and RT-PCR analysis proved that photoreceptors were absent. This shows that (1) mammalian retinal histogenesis in reaggregates can be brought to a hitherto unknown high level, (2) retinal tissue self-organizes from the level of the IPL, and (3) RPE factors promote formation of almost complete retinal spheres, however, their polarity was opposite to that found in respective avian spheroids.


Assuntos
Animais Recém-Nascidos/fisiologia , Agregação Celular/fisiologia , Epitélio Pigmentado Ocular/fisiologia , Retina/citologia , Retina/crescimento & desenvolvimento , Animais , Antimetabólitos/farmacologia , Bromodesoxiuridina/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colinesterases/metabolismo , Meios de Cultivo Condicionados , Interpretação Estatística de Dados , Gerbillinae , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Células Fotorreceptoras de Vertebrados/fisiologia , RNA/biossíntese , RNA/isolamento & purificação , Células Ganglionares da Retina/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Frações Subcelulares/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...