Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 64(2): 513-27, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26693953

RESUMO

Biochar produced by pyrolysis of organic residues is increasingly used for soil amendment and many other applications. However, analytical methods for its physical and chemical characterization are yet far from being specifically adapted, optimized, and standardized. Therefore, COST Action TD1107 conducted an interlaboratory comparison in which 22 laboratories from 12 countries analyzed three different types of biochar for 38 physical-chemical parameters (macro- and microelements, heavy metals, polycyclic aromatic hydrocarbons, pH, electrical conductivity, and specific surface area) with their preferential methods. The data were evaluated in detail using professional interlaboratory testing software. Whereas intralaboratory repeatability was generally good or at least acceptable, interlaboratory reproducibility was mostly not (20% < mean reproducibility standard deviation < 460%). This paper contributes to better comparability of biochar data published already and provides recommendations to improve and harmonize specific methods for biochar analysis in the future.


Assuntos
Carvão Vegetal/análise , Técnicas de Química Analítica/normas , Laboratórios/normas , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Padrões de Referência , Reprodutibilidade dos Testes
2.
Waste Manag ; 34(5): 867-74, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24613591

RESUMO

The production of compost and digestate from source-separated organic residues is well established in Europe. However, these products may be a source of pollutants when applied to soils. In order to assess this issue, composts, solid and liquid digestates from Switzerland were analyzed for heavy metals (Cd, Co, Cr, Cu, Ni, Pb and Zn) addressing factors which may influence the concentration levels: the treatment process, the composition, origin, particle size and impurity content of input materials, the season of input materials collection or the degree of organic matter degradation. Composts (n=81) showed mean contents being at 60% or less of the legal threshold values. Solid digestates (n=20) had 20-50% lower values for Cd, Co, Pb and Zn but similar values for Cr, Cu and Ni. Liquid digestates (n=5) exhibited mean concentrations which were approximately twice the values measured in compost for most elements. Statistical analyses did not reveal clear relationships between influencing factors and heavy metal contents. This suggests that the contamination was rather driven by factors not addressed in the present study. According to mass balance calculations related to Switzerland, the annual loads to agricultural soils resulting from the application of compost and digestates ranged between 2% (Cd) and 22% (Pb) of total heavy metal loads. At regional scale, composts and digestates are therefore minor sources of pollution compared to manure (Co, Cu, Ni, Zn), mineral fertilizer (Cd, Cr) and aerial deposition (Pb). However, for individual fields, fertilization with compost or digestates results in higher heavy metal loads than application of equivalent nutrient inputs through manure or mineral fertilizer.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Resíduos Sólidos/análise , Suíça
3.
Environ Sci Technol ; 45(16): 6752-60, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21711017

RESUMO

Isoflavones and coumestrol (COU) are estrogenic compounds that are naturally produced by plants (e.g., red clover, soybeans). Although these compounds have been extensively studied in food and feed, only little is known about their environmental fate. Therefore, we investigated the occurrence of isoflavones (formononetin, daidzein, equol, biochanin A, and genistein) and COU over 3.5 years in red clover, manure, and soil of a grassland field with and without manure application, as well as their emission via drainage water. Isoflavones were regularly quantified in plant (≤ 15 × 10(6) ng/g(dry weight (dw))), manure (≤ 230 × 10(3) ng/g(dw)), soil (≤ 3.4 × 10(3) ng/g(dw)), and drainage water samples (≤ 3.6 × 10(3) ng/L). In contrast, COU was observed only in manure and soil. Cumulative isoflavone loads emitted via drainage water were around 0.2 × 10(-3) kg/ha/y, which is very little compared to the amounts present in red clover (105-220 kg/ha/y), manure (0.5-1.0 kg/ha/y), and soil (0.1-5.1 kg/ha/y). Under good agricultural practice, no additional emission of isoflavones into drainage water was observed after manure application. With calculated 17ß-estradiol equivalents up to 0.46 ng/L in drainage water, isoflavones can constitute a dominant and ecotoxicological relevant portion of the total estrogenicity in small rural river catchments.


Assuntos
Monitoramento Ambiental , Isoflavonas/análise , Isoflavonas/química , Poaceae/química , Solo/química , Cumestrol/análise , Drenagem Sanitária , Ecotoxicologia , Esterco/análise , Rios/química , Suíça , Trifolium/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...