Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
BMJ Glob Health ; 8(12)2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114235

RESUMO

Diagnostics are widely considered crucial in the fight against antimicrobial resistance (AMR), which is expected to kill 10 million people annually by 2030. Nevertheless, there remains a substantial gap between the need for AMR diagnostics versus their development and implementation. To help address this problem, target product profiles (TPP) have been developed to focus developers' attention on the key aspects of AMR diagnostic tests. However, during discussion between a multisectoral working group of 51 international experts from industry, academia and healthcare, it was noted that specific AMR-related TPPs could be extended by incorporating the interdependencies between the key characteristics associated with the development of such TPPs. Subsequently, the working group identified 46 characteristics associated with six main categories (ie, Intended Use, Diagnostic Question, Test Description, Assay Protocol, Performance and Commercial). The interdependencies of these characteristics were then identified and mapped against each other to generate new insights for use by stakeholders. Specifically, it may not be possible for diagnostics developers to achieve all of the recommendations in every category of a TPP and this publication indicates how prioritising specific TPP characteristics during diagnostics development may influence (or not) a range of other TPP characteristics associated with the diagnostic. The use of such guidance, in conjunction with specific TPPs, could lead to more efficient AMR diagnostics development.


Assuntos
Testes Diagnósticos de Rotina , Resistência Microbiana a Medicamentos , Humanos , Testes Diagnósticos de Rotina/métodos
2.
Biosens Bioelectron ; 231: 115298, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054598

RESUMO

Drug-induced liver injury (DILI) is a major challenge in clinical medicine and drug development. There is a need for rapid diagnostic tests, ideally at point-of-care. MicroRNA 122 (miR-122) is an early biomarker for DILI which is reported to increase in the blood before standard-of-care markers such as alanine aminotransferase activity. We developed an electrochemical biosensor for diagnosis of DILI by detecting miR-122 from clinical samples. We used electrochemical impedance spectroscopy (EIS) for direct, amplification free detection of miR-122 with screen-printed electrodes functionalised with sequence specific peptide nucleic acid (PNA) probes. We studied the probe functionalisation using atomic force microscopy and performed elemental and electrochemical characterisations. To enhance the assay performance and minimise sample volume requirements, we designed and characterised a closed-loop microfluidic system. We presented the EIS assay's specificity for wild-type miR-122 over non-complementary and single nucleotide mismatch targets. We successfully demonstrated a detection limit of 50 pM for miR-122. Assay performance could be extended to real samples; it displayed high selectivity for liver (miR-122 high) comparing to kidney (miR-122 low) derived samples extracted from murine tissue. Finally, we successfully performed an evaluation with 26 clinical samples. Using EIS, DILI patients were distinguished from healthy controls with a ROC-AUC of 0.77, a comparable performance to qPCR detection of miR-122 (ROC-AUC: 0.83). In conclusion, direct, amplification free detection of miR-122 using EIS was achievable at clinically relevant concentrations and in clinical samples. Future work will focus on realising a full sample-to-answer system which can be deployed for point-of-care testing.


Assuntos
Técnicas Biossensoriais , Doença Hepática Induzida por Substâncias e Drogas , MicroRNA Circulante , MicroRNAs , Humanos , Camundongos , Animais , Técnicas Biossensoriais/métodos , Testes Imediatos , Sistemas Automatizados de Assistência Junto ao Leito , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Técnicas Eletroquímicas , MicroRNAs/análise
3.
ACS Sens ; 7(12): 3692-3699, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36482673

RESUMO

We present the development of electrochemical impedance spectroscopy (EIS)-based biosensors for sensitive detection of SARS-CoV-2 RNA using multi-valent binding. By increasing the number of probe-target binding events per target molecule, multi-valent binding is a viable strategy for improving the biosensor performance. As EIS can provide sensitive and label-free measurements of nucleic acid targets during probe-target hybridization, we used multi-valent binding to build EIS biosensors for targeting SARS-CoV-2 RNA. For developing the biosensor, we explored two different approaches including probe combinations that individually bind in a single-valent fashion and the probes that bind in a multi-valent manner on their own. While we found excellent biosensor performance using probe combinations, we also discovered unexpected signal suppression. We explained the signal suppression theoretically using inter- and intra-probe hybridizations which confirmed our experimental findings. With our best probe combination, we achieved a LOD of 182 copies/µL (303 aM) of SARS-CoV-2 RNA and used these for successful evaluation of patient samples for COVID-19 diagnostics. We were also able to show the concept of multi-valent binding with shorter probes in the second approach. Here, a 13-nt-long probe has shown the best performance during SARS-CoV-2 RNA binding. Therefore, multi-valent binding approaches using EIS have high utility for direct detection of nucleic acid targets and for point-of-care diagnostics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , RNA Viral/genética , Hibridização de Ácido Nucleico
4.
Biosens Bioelectron ; 212: 114404, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35635974

RESUMO

This study presents a new strategy and level of mechanistic understanding for ultrasensitive detection of short, non-coding RNAs without target amplification or chemical modification using electrochemical biosensors. Electrochemical impedance spectroscopy (EIS) has been used for probe target interaction detection because of its high utility for sensitive and label-free measurements of the nucleic acid targets as a result of hybridisation. EIS measurements of different probe target combinations in a range of spatial orientations and sequence overlaps showed that bringing the target overhangs closer to the nanometer proximity of the electrode surface improved the EIS signal significantly. Systematic investigations using different lengths of overhangs towards the electrode surface revealed proportionally higher EIS signals with increasing lengths of the overhangs. Our observations could be explained using the Poisson-Boltzmann and Gouy-Chapman model and followed our experimental modelling. In conclusion, the optimized arrangements of our EIS biosensor system enabled us to detect microRNA-122, a known biomarker for liver injury, as well as three common isoforms to a 1 nM (equivalent to 80 fmole) detection limit. This will enable us to develop solutions for the detection of this important blood biomarker at point of care.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Técnicas Biossensoriais/métodos , Espectroscopia Dielétrica , Técnicas Eletroquímicas , Eletrodos , Limite de Detecção , Hibridização de Ácido Nucleico
5.
Biomicrofluidics ; 16(2): 024108, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35464137

RESUMO

Drug-induced liver injury (DILI) results in over 100 000 hospital attendances per year in the UK alone and is a leading cause for the post-marketing withdrawal of new drugs, leading to significant financial losses. MicroRNA-122 (miR-122) has been proposed as a sensitive DILI marker although no commercial applications are available yet. Extracellular blood microRNAs (miRNAs) are promising clinical biomarkers but their measurement at point of care remains time-consuming, technically challenging, and expensive. For circulating miRNA to have an impact on healthcare, a key challenge to overcome is the development of rapid and reliable low-cost sample preparation. There is an acknowledged issue with miRNA stability in the presence of hemolysis and platelet activation, and no solution has been demonstrated for fast and robust extraction at the site of blood draw. Here, we report a novel microfluidic platform for the extraction of circulating miR-122 from blood enabled by a vertical approach and gravity-based bubble mixing. The performance of this disposable cartridge was verified by standard quantitative polymerase chain reaction analysis on extracted miR-122. The cartridge performed equivalently or better than standard bench extraction kits. The extraction cartridge was combined with electrochemical impedance spectroscopy to detect miR-122 as an initial proof-of-concept toward an application in point-of-care detection. This platform enables the standardization of sample preparation and the detection of miRNAs at the point of blood draw and in resource limited settings and could aid the introduction of miRNA-based assays into routine clinical practice.

6.
Environ Microbiol Rep ; 14(3): 391-399, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34344057

RESUMO

The population of methicillin-resistant (MR) staphylococci in aquatic environment is rarely investigated. Here, we characterized a collection of MR staphylococci recovered from shrimp aquaculture farms (n = 37) in Kerala, India. A total of 261 samples yielded 47 MR isolates (16 S. aureus, 13 S. haemolyticus, 11 S. epidermidis, 3 S. saprophytics and 2 each of S.intermedius and S. kloosii). Multi-drug resistance was evident in 72.3% of the isolates, with resistance mainly towards erythromycin (78.7%), norfloxacin and trimethoprim-sulfamethoxazole (53.2%), and gentamicin (34%). Major resistance genes identified included mecA (100%), ermC (38.3%), aacA-aphD (21.3%), tetK (14.9%) and tetM (21.3%). Almost 60% of the isolates carried type V SCCmec (Staphylococcal Cassette Chromosome mec), and the remaining harboured untypeable SCCmec elements. Comprehensive genotyping of the methicillin-resistant Staphylococcus aureus isolates revealed high prevalence of ST772-t345-V (sequence type-spa type-SCCmec type) (75%), followed by minor representations of ST6657-t345-V and ST3190-t12353. The isolates of S. haemolyticus and S. epidermidis were genotypically diverse as shown by their pulsed-field gel electrophoresis (PFGE) profiles. Genes encoding staphylococcal enterotoxins were observed in 53.2% of the isolates. Various genes involved in adhesion and biofilm formation were also identified. In conclusion, our findings provide evidence that shrimp aquaculture settings can act as reservoirs of methicillin-resistant staphylococci.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Aquicultura , Genótipo , Resistência a Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Fenótipo , Staphylococcus/genética , Staphylococcus aureus
7.
JAC Antimicrob Resist ; 3(4): dlab164, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917941

RESUMO

OBJECTIVES: We investigated the prevalence and diversity of antimicrobial resistance in bacteria isolated from urine samples of community-onset urinary tract infection (UTI) patients in southern Assam, India. METHODS: Freshly voided midstream urine samples were collected from patients attending primary healthcare centres, with the patients' epidemiological data also recorded. Species identification was confirmed using a VITEK 2 compact automated system. Phenotypic confirmation of ESBLs was performed using the combined disc diffusion method (CLSI 2017) and carbapenemase production was phenotypically characterized using a modified Hodge test. Common ESBLs and carbapenem-resistance mechanisms were determined in Escherichia coli isolates using PCR assays. Incompatibility typing of the conjugable plasmids was determined by PCR-based replicon typing; the phylotypes and MLSTs were also analysed. RESULTS: A total of 301 (59.7%) samples showed significant bacteriuria along with symptoms of UTI and among them 103 isolates were identified as E. coli of multiple STs (ST3268, ST3430, ST4671 and others). Among them, 26.2% (27/103) were phenotypically ESBL producers whereas 12.6% (13/103) were carbapenemase producers. This study describes the occurrence of diverse ESBL genes-bla CTX-M-15, bla SHV-148, bla PER-1 and bla TEM-and two E. coli isolates carrying the bla NDM-1 carbapenemase gene. ESBL genes were located within transconjugable plasmids of IncP and IncF type whereas bla NDM-1 was carried in an IncFrepB type plasmid. CONCLUSIONS: This study illustrates the high rate of MDR in E. coli causing UTI in primary care in rural Assam. UTIs caused by ESBL- or MBL-producing bacteria are very difficult to treat and can often lead to treatment failure. Thus, future research should focus on rapid diagnostics to enable targeted treatment options and reduce the treatment failure likely to occur with commonly prescribed antibiotics, which will help to combat antimicrobial resistance and the burden of UTIs.

8.
Front Microbiol ; 12: 622891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489875

RESUMO

This study was undertaken to evaluate the prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in selected shrimp aquaculture farms (n = 37) in Kerala, South India and to characterize the isolates using molecular tools. Overall, a low prevalence of ESBL-producers was found in the farms, most likely due to the reduced antibiotic usage in the shrimp farming sector. Out of the 261 samples (77 shrimp and 92 each of water and sediment), 14 (5.4%) tested positive for ESBL-E. coli or ESBL-K. pneumoniae. A total of 32 ESBL-E. coli and 15 ESBL- K. pneumoniae were recovered from these samples. All ESBL isolates were cefotaxime-resistant with minimal inhibitory concentration (MIC) ≥32 µg/ml. Of all isolates, 9 (28.1%) E. coli and 13 (86.7%) K. pneumoniae showed simultaneous resistance to tetracycline, ciprofloxacin, and trimethoprim-sulfamethoxazole. PCR analysis identified CTX-M group 1 (bla CTX-M-15 ) as the predominant ESBL genotype in both E. coli (23, 71.9%) and K. pneumoniae (15, 100%). Other beta-lactamase genes detected were as follows: bla TEM and bla SHV (11 K. pneumoniae), bla CTX-M group 9 (9 E. coli), and bla CMY-2 (2 E. coli). Further screening for AMR genes identified tetA and tetB (13, 40.6%), sul1 (11, 34.4%), sul2 (9, 28.1%), catA and cmlA (11, 34.4%), qepA and aac(6')-Ib-cr (9, 28.1%) and strAB and aadA1 (2, 6.3%) in E. coli, and qnrB (13, 86.7%), qnrS (3, 20%), oqxB (13, 86.7%), tetA (13, 86.7%), and sul2 (13, 86.7%) in K. pneumoniae isolates. Phylogenetic groups identified among E. coli isolates included B1 (4, 12.5%), B2 (6, 18.8%), C (10, 31.3%), D (3, 9.4%), and E (9, 28.1%). PCR-based replicon typing (PBRT) showed the predominance of IncFIA and IncFIB plasmids in E. coli; however, in K. pneumoniae, the major replicon type detected was IncHI1. Invariably, all isolates of K. pneumoniae harbored virulence-associated genes viz., iutA, entB, and mrkD. Epidemiological typing by pulsed-field gel electrophoresis (PFGE) revealed that E. coli isolates recovered from different farms were genetically unrelated, whereas isolates of K. pneumoniae showed considerable genetic relatedness. In conclusion, our findings provide evidence that shrimp aquaculture environments can act as reservoirs of multi-drug resistant E. coli and K. pneumoniae.

9.
Sensors (Basel) ; 21(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800145

RESUMO

Rapid point of care tests for bacterial infection diagnosis are of great importance to reduce the misuse of antibiotics and burden of antimicrobial resistance. Here, we have successfully combined a new class of non-biological binder molecules with electrochemical impedance spectroscopy (EIS)-based sensor detection for direct, label-free detection of Gram-positive bacteria making use of the specific coil-to-globule conformation change of the vancomycin-modified highly branched polymers immobilized on the surface of gold screen-printed electrodes upon binding to Gram-positive bacteria. Staphylococcus carnosus was detected after just 20 min incubation of the sample solution with the polymer-functionalized electrodes. The polymer conformation change was quantified with two simple 1 min EIS tests before and after incubation with the sample. Tests revealed a concentration dependent signal change within an OD600 range of Staphylococcus carnosus from 0.002 to 0.1 and a clear discrimination between Gram-positive Staphylococcus carnosus and Gram-negative Escherichia coli bacteria. This exhibits a clear advancement in terms of simplified test complexity compared to existing bacteria detection tests. In addition, the polymer-functionalized electrodes showed good storage and operational stability.


Assuntos
Técnicas Biossensoriais , Vancomicina , Bactérias , Espectroscopia Dielétrica , Técnicas Eletroquímicas , Eletrodos , Ouro , Polímeros , Staphylococcus
10.
Anal Chem ; 93(15): 6025-6033, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33819015

RESUMO

Antibiotic resistance is now one of the biggest threats humankind is facing, as highlighted in a declaration by the General Assembly of the United Nations in 2016. In particular, the growing resistance rates of Gram-negative bacteria cause increasing concerns. The occurrence of the easily transferable, plasmid-encoded mcr-1 colistin resistance gene further worsened the situation, significantly enhancing the risk of the occurrence of pan-resistant bacteria. There is therefore a strong demand for new rapid molecular diagnostic tests for the detection of mcr-1 gene-associated colistin resistance. Electrochemical impedance spectroscopy (EIS) is a well-suited method for rapid antimicrobial resistance detection as it enables rapid, label-free target detection in a cost-efficient manner. Here, we describe the development of an EIS-based mcr-1 gene detection test, including the design of mcr-1-specific peptide nucleic acid probes and assay specificity optimization through temperature-controlled real-time kinetic EIS measurements. A new flow cell measurement setup enabled for the first time detailed real-time, kinetic temperature-controlled hybridization and dehybridization studies of EIS-based nucleic acid biosensors. The temperature-controlled EIS setup allowed single-nucleotide polymorphism discrimination. Target hybridization at 60 °C enhanced the perfect match/mismatch (PM/MM) discrimination ratio from 2.1 at room temperature to 3.4. A hybridization and washing temperature of 55 °C further increased the PM/MM discrimination ratio to 5.7 by diminishing the mismatch signal during the washing step while keeping the perfect match signal. This newly developed mcr-1 gene detection test enabled the direct, specific label, and amplification-free detection of mcr-1 gene harboring plasmids from Escherichia coli.


Assuntos
Técnicas Biossensoriais , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Colistina/farmacologia , Espectroscopia Dielétrica , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Plasmídeos , Temperatura
11.
J Glob Antimicrob Resist ; 25: 5-7, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662647

RESUMO

Antimicrobial resistance must be recognised as a global societal priority - even in the face of the worldwide challenge of the COVID-19 pandemic. COVID-19 has illustrated the vulnerability of our healthcare systems in co-managing multiple infectious disease threats as resources for monitoring and detecting, and conducting research on antimicrobial resistance have been compromised during the pandemic. The increased awareness of the importance of infectious diseases, clinical microbiology and infection control and lessons learnt during the COVID-19 pandemic should be exploited to ensure that emergence of future infectious disease threats, including those related to AMR, are minimised. Harnessing the public understanding of the relevance of infectious diseases towards the long-term pandemic of AMR could have major implications for promoting good practices about the control of AMR transmission.


Assuntos
COVID-19 , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Pandemias , SARS-CoV-2
12.
Trans R Soc Trop Med Hyg ; 115(10): 1122-1129, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33772597

RESUMO

Antibiotic use in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients during the COVID-19 pandemic has exceeded the incidence of bacterial coinfections and secondary infections, suggesting inappropriate and excessive prescribing. Even in settings with established antimicrobial stewardship (AMS) programmes, there were weaknesses exposed regarding appropriate antibiotic use in the context of the pandemic. Moreover, antimicrobial resistance (AMR) surveillance and AMS have been deprioritised with diversion of health system resources to the pandemic response. This experience highlights deficiencies in AMR containment and mitigation strategies that require urgent attention from clinical and scientific communities. These include the need to implement diagnostic stewardship to assess the global incidence of coinfections and secondary infections in COVID-19 patients, including those by multidrug-resistant pathogens, to identify patients most likely to benefit from antibiotic treatment and identify when antibiotics can be safely withheld, de-escalated or discontinued. Long-term global surveillance of clinical and societal antibiotic use and resistance trends is required to prepare for subsequent changes in AMR epidemiology, while ensuring uninterrupted supply chains and preventing drug shortages and stock outs. These interventions present implementation challenges in resource-constrained settings, making a case for implementation research on AMR. Knowledge and support for these practices will come from internationally coordinated, targeted research on AMR, supporting the preparation for future challenges from emerging AMR in the context of the current COVID-19 pandemic or future pandemics.


Assuntos
COVID-19 , Pandemias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
13.
Br J Clin Pharmacol ; 87(8): 3206-3217, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33432705

RESUMO

AIMS: Patients on antituberculosis (anti-TB) therapy are at risk of drug-induced liver injury (DILI). MicroRNA-122 (miR-122) and cytokeratin-18 (K18) are DILI biomarkers. To explore their utility in this global context, circulating miR-122 and K18 were measured in UK and Ugandan populations on anti-TB therapy for mycobacterial infection. METHODS: Healthy subjects and patients receiving anti-TB therapy were recruited at the Royal Infirmary of Edinburgh, UK (ALISTER-ClinicalTrials.gov Identifier: NCT03211208). African patients with human immunodeficiency virus-TB coinfection were recruited at the Infectious Diseases Institute, Kampala, Uganda (SAEFRIF-NCT03982277). Serial blood samples, demographic and clinical data were collected. In ALISTER samples, MiR-122 was quantified using polymerase chain reaction. In ALISTER and SAEFRIF samples, K18 was quantified by enzyme-linked immunosorbent assay. RESULTS: The study had 235 participants (healthy volunteers [n = 28]; ALISTER: active TB [n = 30], latent TB [n = 88], nontuberculous mycobacterial infection [n = 25]; SAEFRIF: human immunodeficiency virus-TB coinfection [n = 64]). In the absence of DILI, there was no difference in miR-122 and K18 across the groups. Both miR-122 and K18 correlated with alanine transaminase (ALT) activity (miR-122: R = .52, 95%CI = 0.42-0.61, P < .0001. K18: R =0.42, 95%CI = 0.34-0.49, P < .0001). miR-122 distinguished those patients with ALT>50 U/L with higher sensitivity/specificity than K18. There were 2 DILI cases: baseline ALT, 18 and 28 IU/L, peak ALT 431 and 194 IU/L; baseline K18, 58 and 219 U/L, peak K18 1247 and 3490 U/L; baseline miR-122 4 and 17 fM, peak miR-122 60 and 336 fM, respectively. CONCLUSION: In patients treated with anti-TB therapy, miR-122 and K18 correlated with ALT and increased with DILI. Further work should determine their diagnostic and prognostic utility in this global context-of-use.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , MicroRNAs , Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Humanos , Queratina-18 , Uganda/epidemiologia
15.
Chemphyschem ; 21(2): 131, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31957181

RESUMO

The front cover artwork is provided by the group of Dr. Baojun Wang (The University of Edinburgh). The image shows an engineered bacterial cell containing a genetic amplifier circuit which transforms a weak input signal into a larger easily detectable output signal. The electronics symbols used to illustrate the genetic circuit highlight the programmability of the circuit components enabled by state-of-the-art synthetic biology tools. Read the full text of the Review at 10.1002/cphc.201900739.


Assuntos
Bactérias/citologia , Engenharia Celular , Eletrônica , Ilustração Médica , Biologia Sintética , Humanos
16.
Chemphyschem ; 21(2): 132-144, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31585026

RESUMO

Cell-based biosensors offer cheap, portable and simple methods of detecting molecules of interest but have yet to be truly adopted commercially. Issues with their performance and specificity initially slowed the development of cell-based biosensors. With the development of rational approaches to tune response curves, the performance of biosensors has rapidly improved and there are now many biosensors capable of sensing with the required performance. This has stimulated an increased interest in biosensors and their commercial potential. However the reliability, long term stability and biosecurity of these sensors are still barriers to commercial application and public acceptance. Research into overcoming these issues remains active. Here we present the state-of-the-art tools offered by synthetic biology to allow construction of cell-based biosensors with customisable performance to meet the real world requirements in terms of sensitivity and dynamic range and discuss the research progress to overcome the challenges in terms of the sensor stability and biosecurity fears.


Assuntos
Bactérias/citologia , Técnicas Biossensoriais , Engenharia Celular , Biologia Sintética , Técnicas Biossensoriais/instrumentação , Humanos
17.
Eur J Clin Microbiol Infect Dis ; 38(6): 1015-1022, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30710202

RESUMO

The emergence and spread of antimicrobial resistance is one of the major global issues currently threatening the health and wealth of nations, with effective guidelines and intervention strategies urgently required. Such guidelines and interventions should ideally be targeted at individuals, communities, and nations, requiring international coordination for maximum effect. In this respect, the European Joint Programming Initiative on Antimicrobial Resistance Transnational Working Group 'Antimicrobial Resistance - Rapid Diagnostic Tests' (JPIAMR AMR-RDT) is proposing to consider a 'mix-and-match' package for the implementation of point-of-care testing (PoCT), which is described in this publication. The working group was established with the remit of identifying barriers and solutions to the development and implementation of rapid infectious disease PoCT for combatting the global spread of antimicrobial resistance. It constitutes a multi-sectoral collaboration between medical, technological, and industrial opinion leaders involved in in vitro diagnostics development, medical microbiology, and clinical infectious diseases. The mix-and-match implementation package is designed to encourage the implementation of rapid infectious disease and antimicrobial resistance PoCT in transnational medical environments for use in the fight against increasing antimicrobial resistance.


Assuntos
Antibacterianos/farmacologia , Doenças Transmissíveis/diagnóstico , Comportamento Cooperativo , Farmacorresistência Bacteriana , Testes Imediatos , Antibacterianos/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico , Testes Diagnósticos de Rotina/tendências , Pessoal de Saúde , Humanos , Sistemas Automatizados de Assistência Junto ao Leito/organização & administração , Sistemas Automatizados de Assistência Junto ao Leito/tendências , Testes Imediatos/tendências , Saúde Pública
18.
Nat Rev Microbiol ; 17(1): 51-62, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30333569

RESUMO

Antimicrobial susceptibility testing (AST) technologies help to accelerate the initiation of targeted antimicrobial therapy for patients with infections and could potentially extend the lifespan of current narrow-spectrum antimicrobials. Although conceptually new and rapid AST technologies have been described, including new phenotyping methods, digital imaging and genomic approaches, there is no single major, or broadly accepted, technological breakthrough that leads the field of rapid AST platform development. This might be owing to several barriers that prevent the timely development and implementation of novel and rapid AST platforms in health-care settings. In this Consensus Statement, we explore such barriers, which include the utility of new methods, the complex process of validating new technology against reference methods beyond the proof-of-concept phase, the legal and regulatory landscapes, costs, the uptake of new tools, reagent stability, optimization of target product profiles, difficulties conducting clinical trials and issues relating to quality and quality control, and present possible solutions.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Bactérias/genética , Genômica , Saúde Global , Humanos
19.
Sensors (Basel) ; 18(8)2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104478

RESUMO

This article reviews existing clinical practices and sensor research undertaken to monitor fetal well-being during labour. Current clinical practices that include fetal heart rate monitoring and fetal scalp blood sampling are shown to be either inadequate or time-consuming. Monitoring of lactate in blood is identified as a potential alternative for intrapartum fetal monitoring due to its ability to distinguish between different types of acidosis. A literature review from a medical and technical perspective is presented to identify the current advancements in the field of lactate sensors for this application. It is concluded that a less invasive and a more continuous monitoring device is required to fulfill the clinical needs of intrapartum fetal monitoring. Potential specifications for such a system are also presented in this paper.


Assuntos
Acidose/diagnóstico , Hipóxia Fetal/diagnóstico , Monitorização Fetal/instrumentação , Trabalho de Parto , Feminino , Humanos , Ácido Láctico/sangue , Gravidez , Couro Cabeludo
20.
Sensors (Basel) ; 18(6)2018 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890722

RESUMO

For analytical applications involving label-free biosensors and multiple measurements, i.e., across an electrode array, it is essential to develop complete sensor systems capable of functionalization and of producing highly consistent responses. To achieve this, a multi-microelectrode device bearing twenty-four equivalent 50 µm diameter Pt disc microelectrodes was designed in an integrated 3-electrode system configuration and then fabricated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for initial electrochemical characterization of the individual working electrodes. These confirmed the expected consistency of performance with a high degree of measurement reproducibility for each microelectrode across the array. With the aim of assessing the potential for production of an enhanced multi-electrode sensor for biomedical use, the working electrodes were then functionalized with 6-mercapto-1-hexanol (MCH). This is a well-known and commonly employed surface modification process, which involves the same principles of thiol attachment chemistry and self-assembled monolayer (SAM) formation commonly employed in the functionalization of electrodes and the formation of biosensors. Following this SAM formation, the reproducibility of the observed electrochemical signal between electrodes was seen to decrease markedly, compromising the ability to achieve consistent analytical measurements from the sensor array following this relatively simple and well-established surface modification. To successfully and consistently functionalize the sensors, it was necessary to dilute the constituent molecules by a factor of ten thousand to support adequate SAM formation on microelectrodes. The use of this multi-electrode device therefore demonstrates in a high throughput manner irreproducibility in the SAM formation process at the higher concentration, even though these electrodes are apparently functionalized simultaneously in the same film formation environment, confirming that the often seen significant electrode-to-electrode variation in label-free SAM biosensing films formed under such conditions is not likely to be due to variation in film deposition conditions, but rather kinetically controlled variation in the SAM layer formation process at these microelectrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...