Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 10(1): 2572, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189917

RESUMO

Activation of G-protein coupled receptors elevates cAMP levels promoting dissociation of protein kinase A (PKA) holoenzymes and release of catalytic subunits (PKAc). This results in PKAc-mediated phosphorylation of compartmentalized substrates that control central aspects of cell physiology. The mechanism of PKAc activation and signaling have been largely characterized. However, the modes of PKAc inactivation by regulated proteolysis were unknown. Here, we identify a regulatory mechanism that precisely tunes PKAc stability and downstream signaling. Following agonist stimulation, the recruitment of the chaperone-bound E3 ligase CHIP promotes ubiquitylation and proteolysis of PKAc, thus attenuating cAMP signaling. Genetic inactivation of CHIP or pharmacological inhibition of HSP70 enhances PKAc signaling and sustains hippocampal long-term potentiation. Interestingly, primary fibroblasts from autosomal recessive spinocerebellar ataxia 16 (SCAR16) patients carrying germline inactivating mutations of CHIP show a dramatic dysregulation of PKA signaling. This suggests the existence of a negative feedback mechanism for restricting hormonally controlled PKA activities.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Retroalimentação Fisiológica/fisiologia , Chaperonas Moleculares/metabolismo , Ataxias Espinocerebelares/patologia , Animais , Retroalimentação Fisiológica/efeitos dos fármacos , Fibroblastos , Células HEK293 , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Hipocampo/patologia , Holoenzimas/metabolismo , Humanos , Leupeptinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Cultura Primária de Células , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Nucleosídeos de Purina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ataxias Espinocerebelares/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia
3.
Nat Commun ; 9(1): 1224, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29581457

RESUMO

The primary cilium emanates from the cell surface of growth-arrested cells and plays a central role in vertebrate development and tissue homeostasis. The mechanisms that control ciliogenesis have been extensively explored. However, the intersection between GPCR signaling and the ubiquitin pathway in the control of cilium stability are unknown. Here we observe that cAMP elevation promotes cilia resorption. At centriolar satellites, we identify a multimeric complex nucleated by PCM1 that includes two kinases, NEK10 and PKA, and the E3 ubiquitin ligase CHIP. We show that NEK10 is essential for ciliogenesis in mammals and for the development of medaka fish. PKA phosphorylation primes NEK10 for CHIP-mediated ubiquitination and proteolysis resulting in cilia resorption. Disarrangement of this control mechanism occurs in proliferative and genetic disorders. These findings unveil a pericentriolar kinase signalosome that efficiently links the cAMP cascade with the ubiquitin-proteasome system, thereby controlling essential aspects of ciliogenesis.


Assuntos
Cílios/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Animais , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Centríolos/metabolismo , Células HEK293 , Humanos , Hipogonadismo/genética , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Quinases Relacionadas a NIMA/fisiologia , Oryzias/embriologia , Fosforilação , Proteólise , Ataxias Espinocerebelares/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
Proc Natl Acad Sci U S A ; 113(28): 7786-91, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27357676

RESUMO

Scaffolding proteins organize the information flow from activated G protein-coupled receptors (GPCRs) to intracellular effector cascades both spatially and temporally. By this means, signaling scaffolds, such as A-kinase anchoring proteins (AKAPs), compartmentalize kinase activity and ensure substrate selectivity. Using a phosphoproteomics approach we identified a physical and functional connection between protein kinase A (PKA) and Gpr161 (an orphan GPCR) signaling. We show that Gpr161 functions as a selective high-affinity AKAP for type I PKA regulatory subunits (RI). Using cell-based reporters to map protein-protein interactions, we discovered that RI binds directly and selectively to a hydrophobic protein-protein interaction interface in the cytoplasmic carboxyl-terminal tail of Gpr161. Furthermore, our data demonstrate that a binary complex between Gpr161 and RI promotes the compartmentalization of Gpr161 to the plasma membrane. Moreover, we show that Gpr161, functioning as an AKAP, recruits PKA RI to primary cilia in zebrafish embryos. We also show that Gpr161 is a target of PKA phosphorylation, and that mutation of the PKA phosphorylation site affects ciliary receptor localization. Thus, we propose that Gpr161 is itself an AKAP and that the cAMP-sensing Gpr161:PKA complex acts as cilium-compartmentalized signalosome, a concept that now needs to be considered in the analyzing, interpreting, and pharmaceutical targeting of PKA-associated functions.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteína Quinase Tipo I Dependente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Luciferases de Renilla , Camundongos , Fosforilação , Peixe-Zebra
5.
Bioconjug Chem ; 27(7): 1624-37, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27253729

RESUMO

Glycosphingolipids are an important component of cell membranes that are involved in many biological processes. Fluorescently labeled glycosphingolipids are frequently used to gain insight into their localization. However, the attachment of a fluorophore to the glycan part or-more commonly-to the lipid part of glycosphingolipids is known to alter the biophysical properties and can perturb the biological function of the probe. Presented here is the synthesis of novel glycosphingolipid probes with mono- and disaccharide head groups and ceramide moieties containing fatty acids of varying chain length (C4 to C20). These glycosphingolipids bear an azide or an alkyne group as chemical reporter to which a fluorophore can be attached through a bioorthogonal ligation reaction. The fluorescent tag and any linker connected to it can be chosen in a flexible manner. We demonstrate the suitability of the probes by selective visualization of the plasma membrane of living cells by confocal microscopy techniques. Whereas the derivatives with the shorter fatty acids can be directly applied to HEK 293T cells, the hydrophobic glycosphingolipids with longer fatty acids can be delivered to cells using fusogenic liposomes.


Assuntos
Glicoesfingolipídeos/química , Glicoesfingolipídeos/metabolismo , Alcinos/química , Azidas/química , Membrana Celular/metabolismo , Sobrevivência Celular , Química Click , Corantes Fluorescentes/química , Glicoesfingolipídeos/síntese química , Células HEK293 , Humanos , Coloração e Rotulagem
6.
Front Pharmacol ; 6: 214, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441667

RESUMO

[This corrects the article on p. 170 in vol. 6, PMID: 26347651.].

7.
Front Pharmacol ; 6: 170, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347651

RESUMO

The second messenger molecule cAMP links extracellular signals to intracellular responses. The main cellular cAMP effector is the compartmentalized protein kinase A (PKA). Upon receptor initiated cAMP-mobilization, PKA regulatory subunits (R) bind cAMP thereby triggering dissociation and activation of bound PKA catalytic subunits (PKAc). Mutations in PKAc or RIa subunits manipulate PKA dynamics and activities which contribute to specific disease patterns. Mutations activating cAMP/PKA signaling contribute to carcinogenesis or hormone excess, while inactivating mutations cause hormone deficiency or resistance. Here we extended the application spectrum of a Protein-fragment Complementation Assay based on the Renilla Luciferase to determine binary protein:protein interactions (PPIs) of the PKA network. We compared time- and dose-dependent influences of cAMP-elevation on mutually exclusive PPIs of PKAc with the phosphotransferase inhibiting RIIb and RIa subunits and the protein kinase inhibitor peptide (PKI). We analyzed PKA dynamics following integration of patient mutations into PKAc and RIa. We observed that oncogenic modifications of PKAc(L206R) and RIa(Δ184-236) as well as rare disease mutations in RIa(R368X) affect complex formation of PKA and its responsiveness to cAMP elevation. With the cell-based PKA PPI reporter platform we precisely quantified the mechanistic details how inhibitory PKA interactions and defined patient mutations contribute to PKA functions.

8.
PLoS Negl Trop Dis ; 9(8): e0004031, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26317760

RESUMO

The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen's arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS). This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus) and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Cólera/metabolismo , Interações Hospedeiro-Patógeno , Mucinas/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/metabolismo , Animais , Proteínas de Bactérias/genética , Cólera/epidemiologia , Cólera/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Masculino , Camundongos , Pandemias , Sistemas de Secreção Tipo VI/genética , Vibrio cholerae/genética
9.
Sci Rep ; 5: 11133, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26099953

RESUMO

Membrane receptor-sensed input signals affect and modulate intracellular protein-protein interactions (PPIs). Consequent changes occur to the compositions of protein complexes, protein localization and intermolecular binding affinities. Alterations of compartmentalized PPIs emanating from certain deregulated kinases are implicated in the manifestation of diseases such as cancer. Here we describe the application of a genetically encoded Protein-fragment Complementation Assay (PCA) based on the Renilla Luciferase (Rluc) enzyme to compare binary PPIs of the spatially and temporally controlled protein kinase A (PKA) network in diverse eukaryotic model systems. The simplicity and sensitivity of this cell-based reporter allows for real-time recordings of mutually exclusive PPIs of PKA upon activation of selected endogenous G protein-coupled receptors (GPCRs) in cancer cells, xenografts of mice, budding yeast, and zebrafish embryos. This extends the application spectrum of Rluc PCA for the quantification of PPI-based receptor-effector relationships in physiological and pathological model systems.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mapeamento de Interação de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Técnicas Biossensoriais , Linhagem Celular Tumoral , Embrião não Mamífero/metabolismo , Genes Reporter , Células HEK293 , Humanos , Camundongos , Osteossarcoma/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(14): 4501-6, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831502

RESUMO

Cellular processes and homeostasis control in eukaryotic cells is achieved by the action of regulatory proteins such as protein kinase A (PKA). Although the outbound signals from PKA directed to processes such as metabolism, growth, and aging have been well charted, what regulates this conserved regulator remains to be systematically identified to understand how it coordinates biological processes. Using a yeast PKA reporter assay, we identified genes that influence PKA activity by measuring protein-protein interactions between the regulatory and the two catalytic subunits of the PKA complex in 3,726 yeast genetic-deletion backgrounds grown on two carbon sources. Overall, nearly 500 genes were found to be connected directly or indirectly to PKA regulation, including 80 core regulators, denoting a wide diversity of signals regulating PKA, within and beyond the described upstream linear pathways. PKA regulators span multiple processes, including the antagonistic autophagy and methionine biosynthesis pathways. Our results converge toward mechanisms of PKA posttranslational regulation by lysine acetylation, which is conserved between yeast and humans and that, we show, regulates protein complex formation in mammals and carbohydrate storage and aging in yeast. Taken together, these results show that the extent of PKA input matches with its output, because this kinase receives information from upstream and downstream processes, and highlight how biological processes are interconnected and coordinated by PKA.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transdução de Sinais , Acetilação , Sequência de Aminoácidos , Animais , Autofagia , AMP Cíclico/metabolismo , Galactose/química , Glucose/química , Células HEK293 , Homeostase , Humanos , Luciferases de Renilla/metabolismo , Metionina/química , Dados de Sequência Molecular , Filogenia , Processamento de Proteína Pós-Traducional , Ratos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Serina-Treonina Quinases TOR/metabolismo
11.
Nat Commun ; 5: 3549, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24686479

RESUMO

Vibrio cholerae is a Gram-negative bacterial pathogen that consists of over 200 serogroups with differing pathogenic potential. Only strains that express the virulence factors cholera toxin (CT) and toxin-coregulated pilus (TCP) are capable of pandemic spread of cholera diarrhoea. Regardless, all V. cholerae strains sequenced to date harbour genes for the type VI secretion system (T6SS) that translocates effectors into neighbouring eukaryotic and prokaryotic cells. Here we report that the effectors encoded within these conserved gene clusters differ widely among V. cholerae strains, and that immunity proteins encoded immediately downstream from the effector genes protect their host from neighbouring bacteria producing corresponding effectors. As a consequence, strains with matching effector-immunity gene sets can coexist, while strains with different sets compete against each other. Thus, the V. cholerae T6SS contributes to the competitive behaviour of this species.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Cólera/microbiologia , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Dados de Sequência Molecular , Filogenia , Vibrio cholerae/classificação , Vibrio cholerae/genética , Vibrio cholerae/isolamento & purificação , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
12.
Small GTPases ; 4(4): 247-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24322054

RESUMO

Cellular membrane receptors sense environmental changes and relay the reshaped signal through spatially and temporally organized protein-protein interactions (PPI). Many of such PPI are transient and occur in a certain cell-dependent context. Molecular switches such as kinases and GTPases are engaged in versatile PPI. Recently, we have identified dynamic interaction and reciprocal regulation of cAMP-dependent protein kinase A (PKA) and Rho-GTPase Rac signaling. We demonstrated that GTP-activated Rac acts as a dual kinase-tuning scaffold for p21-activated kinase (PAK) and PKA activities. We showed that receptor-triggered PKA trans-phosphorylation of GTP-Rac-organized PAK contributes to elevations of nuclear Erk1/2 signaling and proliferation. We discuss these recent observations and we provide additional insights how the cAMP-PKA axis might also participate in the regulation of Rac localization.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Complexos Multienzimáticos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Feminino , Humanos
13.
Proc Natl Acad Sci U S A ; 110(21): 8531-6, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23657011

RESUMO

Activated G protein-coupled receptors (GPCRs) and receptor tyrosine kinases relay extracellular signals through spatial and temporal controlled kinase and GTPase entities. These enzymes are coordinated by multifunctional scaffolding proteins for precise intracellular signal processing. The cAMP-dependent protein kinase A (PKA) is the prime example for compartmentalized signal transmission downstream of distinct GPCRs. A-kinase anchoring proteins tether PKA to specific intracellular sites to ensure precision and directionality of PKA phosphorylation events. Here, we show that the Rho-GTPase Rac contains A-kinase anchoring protein properties and forms a dynamic cellular protein complex with PKA. The formation of this transient core complex depends on binary interactions with PKA subunits, cAMP levels and cellular GTP-loading accounting for bidirectional consequences on PKA and Rac downstream signaling. We show that GTP-Rac stabilizes the inactive PKA holoenzyme. However, ß-adrenergic receptor-mediated activation of GTP-Rac-bound PKA routes signals to the Raf-Mek-Erk cascade, which is critically implicated in cell proliferation. We describe a further mechanism of how cAMP enhances nuclear Erk1/2 signaling: It emanates from transphosphorylation of p21-activated kinases in their evolutionary conserved kinase-activation loop through GTP-Rac compartmentalized PKA activities. Sole transphosphorylation of p21-activated kinases is not sufficient to activate Erk1/2. It requires complex formation of both kinases with GTP-Rac1 to unleash cAMP-PKA-boosted activation of Raf-Mek-Erk. Consequently GTP-Rac functions as a dual kinase-tuning scaffold that favors the PKA holoenzyme and contributes to potentiate Erk1/2 signaling. Our findings offer additional mechanistic insights how ß-adrenergic receptor-controlled PKA activities enhance GTP-Rac-mediated activation of nuclear Erk1/2 signaling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Complexos Multienzimáticos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Feminino , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Complexos Multienzimáticos/genética , Fosforilação/fisiologia , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Quinases raf/genética , Quinases raf/metabolismo
14.
Nat Commun ; 4: 1822, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23652010

RESUMO

Human glioblastoma is the most frequent and aggressive form of brain tumour in the adult population. Proteolytic turnover of tumour suppressors by the ubiquitin-proteasome system is a mechanism that tumour cells can adopt to sustain their growth and invasiveness. However, the identity of ubiquitin-proteasome targets and regulators in glioblastoma are still unknown. Here we report that the RING ligase praja2 ubiquitylates and degrades Mob, a core component of NDR/LATS kinase and a positive regulator of the tumour-suppressor Hippo cascade. Degradation of Mob through the ubiquitin-proteasome system attenuates the Hippo cascade and sustains glioblastoma growth in vivo. Accordingly, accumulation of praja2 during the transition from low- to high-grade glioma is associated with significant downregulation of the Hippo pathway. These findings identify praja2 as a novel upstream regulator of the Hippo cascade, linking the ubiquitin proteasome system to deregulated glioblastoma growth.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Animais , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/enzimologia , Células HEK293 , Via de Sinalização Hippo , Humanos , Masculino , Camundongos , Camundongos Nus , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Ubiquitinação
15.
J Med Microbiol ; 62(Pt 5): 663-676, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23429693

RESUMO

The type VI secretion system (T6SS) is a mechanism evolved by Gram-negative bacteria to negotiate interactions with eukaryotic and prokaryotic competitors. T6SSs are encoded by a diverse array of bacteria and include plant, animal, human and fish pathogens, as well as environmental isolates. As such, the regulatory mechanisms governing T6SS gene expression vary widely from species to species, and even from strain to strain within a given species. This review concentrates on the four bacterial genera that the majority of recent T6SS regulatory studies have been focused on: Vibrio, Pseudomonas, Burkholderia and Edwardsiella.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Evolução Biológica , Regulação Bacteriana da Expressão Gênica/fisiologia , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Animais , Proteínas de Bactérias/genética , Bactérias Gram-Negativas/patogenicidade , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Virulência
16.
J Biol Chem ; 288(11): 7618-7625, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23341465

RESUMO

The type VI secretion system (T6SS) of Gram-negative bacteria has been implicated in microbial competition; however, which components serve purely structural roles, and which serve as toxic effectors remains unresolved. Here, we present evidence that VgrG-3 of the Vibrio cholerae T6SS has both structural and toxin activity. Specifically, we demonstrate that the C-terminal extension of VgrG-3 acts to degrade peptidoglycan and hypothesize that this assists in the delivery of accessory T6SS toxins of V. cholerae. To avoid self-intoxication, V. cholerae expresses an anti-toxin encoded immediately downstream of vgrG-3 that inhibits VgrG-3-mediated lysis through direct interaction.


Assuntos
Antitoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Sistemas de Secreção Bacterianos/fisiologia , Regulação Bacteriana da Expressão Gênica , Vibrio cholerae/metabolismo , Antitoxinas/fisiologia , Parede Celular/metabolismo , Clonagem Molecular , Biologia Computacional/métodos , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Biológicos , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Virulência , Fatores de Virulência/metabolismo
17.
PLoS One ; 7(10): e48320, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23110230

RESUMO

The type VI secretion system (T6SS) mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae - the causative agent of cholera. All V. cholerae strains examined to date harbor gene clusters encoding a T6SS. Structural similarity and sequence homology between components of the T6SS and the T4 bacteriophage cell-puncturing device suggest that the T6SS functions as a contractile molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Regulation of the T6SS is critical. A subset of V. cholerae strains, including the clinical O37 serogroup strain V52, express T6SS constitutively. In contrast, pandemic strains impose tight control that can be genetically disrupted: mutations in the quorum sensing gene luxO and the newly described regulator gene tsrA lead to constitutive T6SS expression in the El Tor strain C6706. In this report, we examined environmental V. cholerae isolates from the Rio Grande with regard to T6SS regulation. Rough V. cholerae lacking O-antigen carried a nonsense mutation in the gene encoding the global T6SS regulator VasH and did not display virulent behavior towards Escherichia coli and other environmental bacteria. In contrast, smooth V. cholerae strains engaged constitutively in type VI-mediated secretion and displayed virulence towards prokaryotes (E. coli and other environmental bacteria) and a eukaryote (the social amoeba Dictyostelium discoideum). Furthermore, smooth V. cholerae strains were able to outcompete each other in a T6SS-dependent manner. The work presented here suggests that constitutive T6SS expression provides V. cholerae with an advantage in intraspecific and interspecific competition.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Vibrio cholerae/genética , Vibrio cholerae/fisiologia
18.
PLoS One ; 7(6): e39908, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768164

RESUMO

BACKGROUND: Several pathogenic bacteria utilize receptors of the CEACAM family to attach to human cells. Binding to different members of this receptor family can result in uptake of the bacteria. Uptake of Neisseria gonorrhoeae, a gram-negative human pathogen, via CEACAMs found on epithelial cells, such as CEACAM1, CEA or CEACAM6, differs mechanistically from phagocytosis mediated by CEACAM3, a CEACAM family member expressed selectively by human granulocytes. PRINCIPAL FINDINGS: We find that CEACAM1- as well as CEACAM3-mediated bacterial internalization are accompanied by a rapid increase in phosphatidylinositol-3,4,5 phosphate (PI(3,4,5)P) at the site of bacterial entry. However, pharmacological inhibition of phosphatidylinositol-3' kinase (PI3K) selectively affects CEACAM1-mediated uptake of Neisseria gonorrhoeae. Accordingly, overexpression of the PI(3,4,5)P phosphatase SHIP diminishes and expression of a constitutive active PI3K increases CEACAM1-mediated internalization of gonococci, without influencing uptake by CEACAM3. Furthermore, bacterial uptake by GPI-linked members of the CEACAM family (CEA and CEACAM6) and CEACAM1-mediated internalization of N. meningitidis by endothelial cells require PI3K activity. Sensitivity of CEACAM1-mediated uptake toward PI3K inhibition is independent of receptor localization in cholesterol-rich membrane microdomains and does not require the cytoplasmic or the transmembrane domain of CEACAM1. However, PI3K inhibitor sensitivity requires the Ig(C2)-like domains of CEACAM1, which are also present in CEA and CEACAM6, but which are absent from CEACAM3. Accordingly, overexpression of CEACAM1 Ig(C2) domains blocks CEACAM1-mediated internalization. CONCLUSIONS: Our results provide novel mechanistic insight into CEACAM1-mediated endocytosis and suggest that epithelial CEACAMs associate in cis with other membrane receptor(s) via their extracellular domains to trigger bacterial uptake in a PI3K-dependent manner.


Assuntos
Antígenos CD/química , Antígenos CD/metabolismo , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Espaço Extracelular/metabolismo , Regiões Constantes de Imunoglobulina/química , Neisseria gonorrhoeae/metabolismo , Neisseria meningitidis/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Aderência Bacteriana , Linhagem Celular , Endocitose , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Interações Hospedeiro-Patógeno , Humanos , Inositol Polifosfato 5-Fosfatases , Microdomínios da Membrana/metabolismo , Proteínas Mutantes/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Monoéster Fosfórico Hidrolases/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
19.
Nat Commun ; 2: 598, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22186894

RESUMO

G-protein-coupled receptors sense extracellular chemical or physical stimuli and transmit these signals to distinct trimeric G-proteins. Activated Gα-proteins route signals to interconnected effector cascades, thus regulating thresholds, amplitudes and durations of signalling. Gαs- or Gαi-coupled receptor cascades are mechanistically conserved and mediate many sensory processes, including synaptic transmission, cell proliferation and chemotaxis. Here we show that a central, conserved component of Gαs-coupled receptor cascades, the regulatory subunit type-II (RII) of protein kinase A undergoes adenosine 3'-5'-cyclic monophosphate (cAMP)-dependent binding to Gαi. Stimulation of a mammalian Gαi-coupled receptor and concomitant cAMP-RII binding to Gαi, augments the sensitivity, amplitude and duration of Gαi:ßγ activity and downstream mitogen-activated protein kinase signalling, independent of protein kinase A kinase activity. The mechanism is conserved in budding yeast, causing nutrient-dependent modulation of a pheromone response. These findings suggest a direct mechanism by which coincident activation of Gαs-coupled receptors controls the precision of adaptive responses of activated Gαi-coupled receptor cascades.


Assuntos
Adaptação Fisiológica/genética , Proteína Quinase Tipo II Dependente de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Clonagem Molecular , AMP Cíclico/metabolismo , Proteína Quinase Tipo II Dependente de AMP Cíclico/genética , Escherichia coli , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Mutação , Fosforilação , Plasmídeos , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transformação Bacteriana
20.
J Biol Chem ; 286(11): 9555-66, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21216968

RESUMO

Carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3) is an immunoglobulin-related receptor expressed on human granulocytes. CEACAM3 functions as a single chain phagocytotic receptor recognizing gram-negative bacteria such as Neisseria gonorrhoeae, which possess CEACAM-binding adhesins on their surface. The cytoplasmic domain of CEACAM3 contains an immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is phosphorylated upon receptor engagement. Here we show that the SH2 domains of the regulatory subunit of phosphatidylinositol 3'-kinase (PI3K) bind to tyrosine residue 230 of CEACAM3 in a phosphorylation-dependent manner. PI3K is rapidly recruited and directly associates with CEACAM3 upon bacterial binding as shown by FRET analysis. Although PI3K activity is not required for efficient uptake of the bacteria by CEACAM3-transfected cells or primary human granulocytes, it is critical for the stimulated production of reactive oxygen species by infected phagocytes and the intracellular degradation of CEACAM-binding bacteria. Together, our results highlight the ability of CEACAM3 to coordinate signaling events that not only mediate bacterial uptake, but also trigger the killing of internalized pathogens.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Gonorreia/metabolismo , Granulócitos/metabolismo , Neisseria gonorrhoeae/metabolismo , Fagocitose/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Explosão Respiratória/fisiologia , Adesinas Bacterianas/metabolismo , Antígeno Carcinoembrionário/genética , Gonorreia/genética , Células HEK293 , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosforilação/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...