Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7985, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042860

RESUMO

Hemoproteins have recently emerged as promising biocatalysts for new-to-nature carbene transfer reactions. However, mechanistic understanding of the interplay between productive and unproductive pathways in these processes is limited. Using spectroscopic, structural, and computational methods, we investigate the mechanism of a myoglobin-catalyzed cyclopropanation reaction with diazoketones. These studies shed light on the nature and kinetics of key catalytic steps in this reaction, including the formation of an early heme-bound diazo complex intermediate, the rate-determining nature of carbene formation, and the cyclopropanation mechanism. Our analyses further reveal the existence of a complex mechanistic manifold for this reaction that includes a competing pathway resulting in the formation of an N-bound carbene adduct of the heme cofactor, which was isolated and characterized by X-ray crystallography, UV-Vis, and Mössbauer spectroscopy. This species can regenerate the active biocatalyst, constituting a non-productive, yet non-destructive detour from the main catalytic cycle. These findings offer a valuable framework for both mechanistic analysis and design of hemoprotein-catalyzed carbene transfer reactions.


Assuntos
Metano , Mioglobina , Mioglobina/química , Catálise , Metano/química , Heme
2.
PLoS One ; 17(11): e0277670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36395154

RESUMO

The ability of Mycobacterium tuberculosis (Mtb) to persist in its host may enable an evolutionary advantage for drug resistant variants to emerge. A potential strategy to prevent persistence and gain drug efficacy is to directly target the activity of enzymes that are crucial for persistence. We present a method for expedited discovery and structure-based design of lead compounds by targeting the hypoxia-associated enzyme L-alanine dehydrogenase (AlaDH). Biochemical and structural analyses of AlaDH confirmed binding of nucleoside derivatives and showed a site adjacent to the nucleoside binding pocket that can confer specificity to putative inhibitors. Using a combination of dye-ligand affinity chromatography, enzyme kinetics and protein crystallographic studies, we show the development and validation of drug prototypes. Crystal structures of AlaDH-inhibitor complexes with variations at the N6 position of the adenyl-moiety of the inhibitor provide insight into the molecular basis for the specificity of these compounds. We describe a drug-designing pipeline that aims to block Mtb to proliferate upon re-oxygenation by specifically blocking NAD accessibility to AlaDH. The collective approach to drug discovery was further evaluated through in silico analyses providing additional insight into an efficient drug development strategy that can be further assessed with the incorporation of in vivo studies.


Assuntos
Alanina Desidrogenase , Mycobacterium tuberculosis , Alanina Desidrogenase/metabolismo , Mycobacterium tuberculosis/metabolismo , Nucleosídeos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Descoberta de Drogas
3.
Biochemistry ; 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612958

RESUMO

Enhancing the thermostability of enzymes without impacting their catalytic function represents an important yet challenging goal in protein engineering and biocatalysis. We recently introduced a novel method for enzyme thermostabilization that relies on the computationally guided installation of genetically encoded thioether "staples" into a protein via cysteine alkylation with the noncanonical amino acid O-2-bromoethyl tyrosine (O2beY). Here, we demonstrate the functionality of an expanded set of electrophilic amino acids featuring chloroacetamido, acrylamido, and vinylsulfonamido side-chain groups for protein stapling using this strategy. Using a myoglobin-based cyclopropanase as a model enzyme, our studies show that covalent stapling with p-chloroacetamido-phenylalanine (pCaaF) provides higher stapling efficiency and enhanced stability (thermodynamic and kinetic) compared to the other stapled variants and the parent protein. Interestingly, molecular simulations of conformational flexibility of the cross-links show that the pCaaF staple allows fewer energetically feasible conformers than the other staples, and this property may be a broader indicator of stability enhancement. Using this strategy, pCaaF-stapled variants with significantly enhanced stability against thermal denaturation (ΔTm' = +27 °C) and temperature-induced heme loss (ΔT50 = +30 °C) were obtained while maintaining high levels of catalytic activity and stereoselectivity. Crystallographic analyses of singly and doubly stapled variants provide key insights into the structural basis for stabilization, which includes both direct interactions of the staples with protein residues and indirect interactions through adjacent residues involved in heme binding. This work expands the toolbox of protein stapling strategies available for protein stabilization.

4.
J Biol Chem ; 296: 100107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33219127

RESUMO

A key step in bacteriochlorophyll biosynthesis is the reduction of protochlorophyllide to chlorophyllide, catalyzed by dark-operative protochlorophyllide oxidoreductase. Dark-operative protochlorophyllide oxidoreductase contains two [4Fe-4S]-containing component proteins (BchL and BchNB) that assemble upon ATP binding to BchL to coordinate electron transfer and protochlorophyllide reduction. But the precise nature of the ATP-induced conformational changes is poorly understood. We present a crystal structure of BchL in the nucleotide-free form where a conserved, flexible region in the N-terminus masks the [4Fe-4S] cluster at the docking interface between BchL and BchNB. Amino acid substitutions in this region produce a hyperactive enzyme complex, suggesting a role for the N-terminus in autoinhibition. Hydrogen-deuterium exchange mass spectrometry shows that ATP binding to BchL produces specific conformational changes leading to release of the flexible N-terminus from the docking interface. The release also promotes changes within the local environment surrounding the [4Fe-4S] cluster and promotes BchL-complex formation with BchNB. A key patch of amino acids, Asp-Phe-Asp (the 'DFD patch'), situated at the mouth of the BchL ATP-binding pocket promotes intersubunit cross stabilization of the two subunits. A linked BchL dimer with one defective ATP-binding site does not support protochlorophyllide reduction, illustrating nucleotide binding to both subunits as a prerequisite for the intersubunit cross stabilization. The masking of the [4Fe-4S] cluster by the flexible N-terminal region and the associated inhibition of the activity is a novel mechanism of regulation in metalloproteins. Such mechanisms are possibly an adaptation to the anaerobic nature of eubacterial cells with poor tolerance for oxygen.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Trifosfato de Adenosina/química , Catálise , Proteínas Ferro-Enxofre/química , Espectrometria de Massas , Nitrogenase/química , Nitrogenase/metabolismo , Fotossíntese , Protoclorifilida/química , Protoclorifilida/metabolismo , Especificidade por Substrato
5.
Nat Commun ; 10(1): 2653, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201319

RESUMO

Ribonucleotide reductases (RNRs) use a conserved radical-based mechanism to catalyze the conversion of ribonucleotides to deoxyribonucleotides. Within the RNR family, class Ib RNRs are notable for being largely restricted to bacteria, including many pathogens, and for lacking an evolutionarily mobile ATP-cone domain that allosterically controls overall activity. In this study, we report the emergence of a distinct and unexpected mechanism of activity regulation in the sole RNR of the model organism Bacillus subtilis. Using a hypothesis-driven structural approach that combines the strengths of small-angle X-ray scattering (SAXS), crystallography, and cryo-electron microscopy (cryo-EM), we describe the reversible interconversion of six unique structures, including a flexible active tetramer and two inhibited helical filaments. These structures reveal the conformational gymnastics necessary for RNR activity and the molecular basis for its control via an evolutionarily convergent form of allostery.


Assuntos
Sítio Alostérico/genética , Proteínas de Bactérias/genética , Ribonucleotídeo Redutases/genética , Regulação Alostérica/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Evolução Molecular , Modelos Moleculares , Estrutura Quaternária de Proteína/genética , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Ribonucleotídeo Redutases/ultraestrutura , Ribonucleotídeos/metabolismo , Espalhamento a Baixo Ângulo
6.
ACS Catal ; 9(2): 1514-1524, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31134138

RESUMO

Recent advances in metalloprotein engineering have led to the development of a myoglobin-based catalyst, Mb(H64V,V68A), capable of promoting the cyclopropanation of vinylarenes with high efficiency and high diastereo- and enantioselectivity. Whereas many enzymes evolved in nature often exhibit catalytic proficiency and exquisite stereoselectivity, how these features are achieved for a non-natural reaction has remained unclear. In this work, the structural determinants responsible for chiral induction and high stereocontrol in Mb(H64V,V68A)-catalyzed cyclopropanation were investigated via a combination of crystallographic, computational (DFT), and structure-activity analyses. Our results show the importance of steric complementarity and non-covalent interactions involving first-sphere active site residues, heme-carbene, and the olefin substrate, in dictating the stereochemical outcome of the cyclopropanation reaction. High stereocontrol is achieved through two major mechanisms. First, by enforcing a specific conformation of the heme-bound carbene within the active site. Second, by controlling the geometry of attack of the olefin on the carbene via steric occlusion, attractive van der Waals forces and protein-mediated π-π interactions with the olefin substrate. These insights could be leveraged to expand the substrate scope of the myoglobin-based cyclopropanation catalyst toward non-activated olefins and to increase its cyclopropanation activity in the presence of a bulky α-diazo-ester. This work sheds first light into the origin of enzyme-catalyzed enantioselective cyclopropanation, furnishing a mechanistic framework for both understanding the reactivity of current systems and guiding the future development of biological catalysts for this class of synthetically important, abiotic transformations.

7.
Biochemistry ; 56(20): 2529-2532, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28481095

RESUMO

A 1.1 Å resolution, room-temperature X-ray structure and a 2.1 Å resolution neutron structure of a chitin-degrading lytic polysaccharide monooxygenase domain from the bacterium Jonesia denitrificans (JdLPMO10A) show a putative dioxygen species equatorially bound to the active site copper. Both structures show an elongated density for the dioxygen, most consistent with a Cu(II)-bound peroxide. The coordination environment is consistent with Cu(II). In the neutron and X-ray structures, difference maps reveal the N-terminal amino group, involved in copper coordination, is present as a mixed ND2 and ND-, suggesting a role for the copper ion in shifting the pKa of the amino terminus.


Assuntos
Cobre/química , Oxigenases de Função Mista/química , Oxigênio/química , Polissacarídeos/química , Domínio Catalítico , Cristalografia por Raios X , Conformação Proteica , Prótons
8.
Proc Natl Acad Sci U S A ; 114(9): 2265-2270, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28196882

RESUMO

Proteins are marginally stable, and an understanding of the sequence determinants for improved protein solubility is highly desired. For enzymes, it is well known that many mutations that increase protein solubility decrease catalytic activity. These competing effects frustrate efforts to design and engineer stable, active enzymes without laborious high-throughput activity screens. To address the trade-off between enzyme solubility and activity, we performed deep mutational scanning using two different screens/selections that purport to gauge protein solubility for two full-length enzymes. We assayed a TEM-1 beta-lactamase variant and levoglucosan kinase (LGK) using yeast surface display (YSD) screening and a twin-arginine translocation pathway selection. We then compared these scans with published experimental fitness landscapes. Results from the YSD screen could explain 37% of the variance in the fitness landscapes for one enzyme. Five percent to 10% of all single missense mutations improve solubility, matching theoretical predictions of global protein stability. For a given solubility-enhancing mutation, the probability that it would retain wild-type fitness was correlated with evolutionary conservation and distance to active site, and anticorrelated with contact number. Hybrid classification models were developed that could predict solubility-enhancing mutations that maintain wild-type fitness with an accuracy of 90%. The downside of using such classification models is the removal of rare mutations that improve both fitness and solubility. To reveal the biophysical basis of enhanced protein solubility and function, we determined the crystallographic structure of one such LGK mutant. Beyond fundamental insights into trade-offs between stability and activity, these results have potential biotechnological applications.


Assuntos
Produtos do Gene tat/química , Ensaios de Triagem em Larga Escala , Fosfotransferases/química , beta-Lactamases/química , Substituição de Aminoácidos , Aspergillus niger/química , Aspergillus niger/enzimologia , Sítios de Ligação , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Produtos do Gene tat/metabolismo , HIV/química , HIV/metabolismo , Modelos Moleculares , Mutação , Biblioteca de Peptídeos , Fosfotransferases/genética , Fosfotransferases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Transporte Proteico , Solubilidade , Relação Estrutura-Atividade , Técnicas do Sistema de Duplo-Híbrido , beta-Lactamases/genética , beta-Lactamases/metabolismo
9.
IUBMB Life ; 68(9): 700-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27416973

RESUMO

As methods for the use of anhydrosugars in chemical and biofuel production continue to develop, our collective knowledge of anhydrosugar processing enzymes continues to improve, including their mechanistic details, structural dynamics and modes of substrate binding. Of particular interest, anhydrosugar kinases, such as levoglucosan kinase (LGK) and 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), utilize an unusual mechanism whereby the sugar substrate is both cleaved and phosphorylated. The phosphorylated sugar can then be routed to other metabolic pathways, thereby allowing its further bioconversion. Advanced engineering efforts to improve the catalytic efficiency and stability of LGK have been steadily progressing. Other enzymes that cleave the glycosidic bond of disaccharide sugars containing an anhydrosugar component are also being identified and characterized. Accordingly, the potential future use of these enzymes in large-scale production strategies is becoming increasingly viable. Here, a mini-review of the observed characteristics of anhydrosugar processing enzymes is presented along with recent developments in the bioconversion of these sugars. © 2016 IUBMB Life 68(9):700-708, 2016.


Assuntos
Escherichia coli/enzimologia , Fosfotransferases/genética , Desidrogenase do Álcool de Açúcar/genética , Biocombustíveis , Carboidratos/química , Carboidratos/genética , Escherichia coli/genética , Ácidos Murâmicos/química , Ácidos Murâmicos/metabolismo , Fosforilação , Fosfotransferases/química , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo
10.
FEBS Lett ; 590(1): 34-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26763108

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) boost enzymatic depolymerization of recalcitrant polysaccharides, such as chitin and cellulose. We have studied a chitin-active LPMO domain (JdLPMO10A) that is considerably smaller (15.5 kDa) than all structurally characterized LPMOs so far and that is part of a modular protein containing a GH18 chitinase. The 1.55 Å resolution structure revealed deletions of interacting loops that protrude from the core ß-sandwich scaffold in larger LPMO10s. Despite these deletions, the enzyme is active on alpha- and beta-chitin, and the chitin-binding surface previously described for larger LPMOs is fully conserved. JdLPMO10A may represent a minimal scaffold needed to catalyse the powerful LPMO reaction.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Quitina/metabolismo , Quitinases/metabolismo , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Celulose/química , Quitina/química , Quitinases/química , Sequência Conservada , Cristalografia por Raios X , Hidrólise , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Peso Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Filogenia , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
11.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 11): 1448-52, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26527275

RESUMO

Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1-3 mm(3)) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected and processed to 1.1 Å resolution in space group P212121. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. Joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes.


Assuntos
Oxigenases de Função Mista/química , Difração de Nêutrons/métodos , Polissacarídeos Bacterianos/química , Cristalização , Cristalografia por Raios X , Bactérias Gram-Positivas/enzimologia , Oxigenases de Função Mista/isolamento & purificação , Polissacarídeos Bacterianos/isolamento & purificação , Temperatura
12.
ACS Synth Biol ; 4(11): 1235-43, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26369947

RESUMO

Synthetic metabolic pathways often suffer from low specific productivity, and new methods that quickly assess pathway functionality for many thousands of variants are urgently needed. Here we present an approach that enables the rapid and parallel determination of sequence effects on flux for complete gene-encoding sequences. We show that this method can be used to determine the effects of over 8000 single point mutants of a pyrolysis oil catabolic pathway implanted in Escherichia coli. Experimental sequence-function data sets predicted whether fitness-enhancing mutations to the enzyme levoglucosan kinase resulted from enhanced catalytic efficiency or enzyme stability. A structure of one design incorporating 38 mutations elucidated the structural basis of high fitness mutations. One design incorporating 15 beneficial mutations supported a 15-fold improvement in growth rate and greater than 24-fold improvement in enzyme activity relative to the starting pathway. This technique can be extended to improve a wide variety of designed pathways.


Assuntos
Escherichia coli/metabolismo , Glucose/análogos & derivados , Biocatálise , Biomassa , Estabilidade Enzimática , Escherichia coli/enzimologia , Glucose/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Biologia Sintética
13.
Protein J ; 34(5): 359-66, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26385696

RESUMO

FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is thus of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl-CoA, we predicted amino acid positions within the effector binding pocket that would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Apraxia Ideomotora , Proteínas de Bactérias/genética , Sítios de Ligação , Escherichia coli/química , Ácidos Graxos/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Repressoras/genética
14.
J Biol Chem ; 290(44): 26638-48, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26354439

RESUMO

The most abundant carbohydrate product of cellulosic biomass pyrolysis is the anhydrosugar levoglucosan (1,6-anhydro-ß-d-glucopyranose), which can be converted to glucose 6-phosphate by levoglucosan kinase (LGK). In addition to the canonical kinase phosphotransfer reaction, the conversion requires cleavage of the 1,6-anhydro ring to allow ATP-dependent phosphorylation of the sugar O6 atom. Using x-ray crystallography, we show that LGK binds two magnesium ions in the active site that are additionally coordinated with the nucleotide and water molecules to result in ideal octahedral coordination. To further verify the metal binding sites, we co-crystallized LGK in the presence of manganese instead of magnesium and solved the structure de novo using the anomalous signal from four manganese atoms in the dimeric structure. The first metal is required for catalysis, whereas our work suggests that the second is either required or significantly promotes the catalytic rate. Although the enzyme binds its sugar substrate in a similar orientation to the structurally related 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), it forms markedly fewer bonding interactions with the substrate. In this orientation, the sugar is in an optimal position to couple phosphorylation with ring cleavage. We also observed a second alternate binding orientation for levoglucosan, and in these structures, ADP was found to bind with lower affinity. These combined observations provide an explanation for the high Km of LGK for levoglucosan. Greater knowledge of the factors that contribute to the catalytic efficiency of LGK can be used to improve applications of this enzyme for levoglucosan-derived biofuel production.


Assuntos
Celulose/química , Proteínas Fúngicas/química , Glucose-6-Fosfato/química , Glucose/análogos & derivados , Lipomyces/química , Fosfotransferases/química , Biocatálise , Biomassa , Celulose/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Glucose/química , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Cinética , Lipomyces/enzimologia , Magnésio/química , Magnésio/metabolismo , Manganês/química , Manganês/metabolismo , Modelos Moleculares , Fosforilação , Fosfotransferases/genética , Fosfotransferases/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Proc Natl Acad Sci U S A ; 112(18): 5673-8, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902526

RESUMO

Human carbonic anhydrase II (HCA II) uses a Zn-bound OH(-)/H2O mechanism to catalyze the reversible hydration of CO2. This catalysis also involves a separate proton transfer step, mediated by an ordered solvent network coordinated by hydrophilic residues. One of these residues, Tyr7, was previously shown to be deprotonated in the neutron crystal structure at pH 10. This observation indicated that Tyr7 has a perturbed pKa compared with free tyrosine. To further probe the pKa of this residue, NMR spectroscopic measurements of [(13)C]Tyr-labeled holo HCA II (with active-site Zn present) were preformed to titrate all Tyr residues between pH 5.4-11.0. In addition, neutron studies of apo HCA II (with Zn removed from the active site) at pH 7.5 and holo HCA II at pH 6 were conducted. This detailed interrogation of tyrosines in HCA II by NMR and neutron crystallography revealed a significantly lowered pKa of Tyr7 and how pH and Tyr proximity to Zn affect hydrogen-bonding interactions.


Assuntos
Anidrases Carbônicas/química , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância Magnética/métodos , Nêutrons , Tirosina/química , Catálise , Domínio Catalítico , Cátions , Enzimas/química , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Conformação Proteica , Prótons , Eletricidade Estática , Água/química
16.
J Biol Chem ; 289(7): 4504-14, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24362022

RESUMO

Anhydro-sugar kinases are unique from other sugar kinases in that they must cleave the 1,6-anhydro ring of their sugar substrate to phosphorylate it using ATP. Here we show that the peptidoglycan recycling enzyme 1,6-anhydro-N-acetylmuramic acid kinase (AnmK) from Pseudomonas aeruginosa undergoes large conformational changes during its catalytic cycle, with its two domains rotating apart by up to 32° around two hinge regions to expose an active site cleft into which the substrates 1,6-anhydroMurNAc and ATP can bind. X-ray structures of the open state bound to a nonhydrolyzable ATP analog (AMPPCP) and 1,6-anhydroMurNAc provide detailed insight into a ternary complex that forms preceding an operative Michaelis complex. Structural analysis of the hinge regions demonstrates a role for nucleotide binding and possible cross-talk between the bound ligands to modulate the opening and closing of AnmK. Although AnmK was found to exhibit similar binding affinities for ATP, ADP, and AMPPCP according to fluorescence spectroscopy, small angle x-ray scattering analyses revealed that AnmK adopts an open conformation in solution in the absence of ligand and that it remains in this open state after binding AMPPCP, as we had observed for our crystal structure of this complex. In contrast, the enzyme favored a closed conformation when bound to ADP in solution, consistent with a previous crystal structure of this complex. Together, our findings show that the open conformation of AnmK facilitates binding of both the sugar and nucleotide substrates and that large structural rearrangements must occur upon closure of the enzyme to correctly align the substrates and residues of the enzyme for catalysis.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Ácidos Murâmicos/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Pseudomonas aeruginosa/enzimologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Ácidos Murâmicos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/genética
17.
Chembiochem ; 14(15): 1973-81, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24009110

RESUMO

The increasing incidence of inducible chromosomal AmpC ß-lactamases within the clinic is a growing concern because these enzymes deactivate a broad range of even the most recently developed ß-lactam antibiotics. As a result, new strategies are needed to block the action of this antibiotic resistance enzyme. Presented here is a strategy to combat the action of inducible AmpC by inhibiting the ß-glucosaminidase NagZ, which is an enzyme involved in regulating the induction of AmpC expression. A divergent route facilitating the rapid synthesis of a series of N-acyl analogues of 2-acetamido-2-deoxynojirimycin is reported here. Among these compounds are potent NagZ inhibitors that are selective against functionally related human enzymes. These compounds reduce minimum inhibitory concentration values for ß-lactams against a clinically relevant Gram-negative bacterium bearing inducible chromosomal AmpC ß-lactamase, Pseudomonas aeruginosa. The structure of a NagZ-inhibitor complex provides insight into the molecular basis for inhibition by these compounds.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Hexosaminidases/antagonistas & inibidores , beta-Lactamas/farmacologia , Hexosaminidases/química , Hexosaminidases/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptidoglicano/metabolismo , Conformação Proteica
18.
Chem Biol ; 19(11): 1471-82, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23177201

RESUMO

NagZ is a glycoside hydrolase that participates in peptidoglycan (PG) recycling by removing ß-N-acetylglucosamine from PG fragments that are excised from the bacterial cell wall during growth. Notably, the products formed by NagZ, 1,6-anhydroMurNAc-peptides, activate ß-lactam resistance in many Gram-negative bacteria, making this enzyme of interest as a potential therapeutic target. Crystal structure determinations of NagZ from Salmonella typhimurium and Bacillus subtilis in complex with natural substrate, trapped as a glycosyl-enzyme intermediate, and bound to product, define the reaction coordinate of the NagZ family of enzymes. The structures, combined with kinetic studies, reveal an uncommon degree of structural plasticity within the active site of a glycoside hydrolase, and unveil how NagZ drives substrate distortion using a highly mobile loop that contains a conserved histidine that has been proposed as the general acid/base.


Assuntos
Bacillus subtilis/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Salmonella typhimurium/química , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Dissacarídeos/metabolismo , Glicosídeo Hidrolases/genética , Modelos Moleculares , Conformação Proteica
19.
J Biol Chem ; 286(14): 12283-91, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21288904

RESUMO

Anhydro-N-acetylmuramic acid kinase (AnmK) catalyzes the ATP-dependent conversion of the Gram-negative peptidoglycan (PG) recycling intermediate 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) to N-acetylmuramic acid-6-phosphate (MurNAc-6-P). Here we present crystal structures of Pseudomonas aeruginosa AnmK in complex with its natural substrate, anhMurNAc, and a product of the reaction, ADP. AnmK is homodimeric, with each subunit comprised of two subdomains that are separated by a deep active site cleft, which bears similarity to the ATPase core of proteins belonging to the hexokinase-hsp70-actin superfamily of proteins. The conversion of anhMurNAc to MurNAc-6-P involves both cleavage of the 1,6-anhydro ring of anhMurNAc along with addition of a phosphoryl group to O6 of the sugar, and thus represents an unusual enzymatic mechanism involving the formal addition of H3PO4 to anhMurNAc. The structural complexes and NMR analysis of the reaction suggest that a water molecule, activated by Asp-182, attacks the anomeric carbon of anhMurNAc, aiding cleavage of the 1,6-anhydro bond and facilitating the capture of the γ phosphate of ATP by O6 via an in-line phosphoryl transfer. AnmK is active only against anhMurNAc and not the metabolically related 1,6-anhydro-N-acetylmuramyl peptides, suggesting that the cytosolic N-acetyl-anhydromuramyl-l-alanine amidase AmpD must first remove the stem peptide from these PG muropeptide catabolites before anhMurNAc can be acted upon by AnmK. Our studies provide the foundation for a mechanistic model for the dual activities of AnmK as a hydrolase and a kinase of an unusual heterocyclic monosaccharide.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Murâmicos/metabolismo , Fosfotransferases/metabolismo , Pseudomonas aeruginosa/enzimologia , Trifosfato de Adenosina , Proteínas de Bactérias/genética , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Mutagênese Sítio-Dirigida , Fosfotransferases/genética , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/genética
20.
Proc Natl Acad Sci U S A ; 108(6): 2222-7, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21245344

RESUMO

The attachment of ubiquitin (Ub) and the Ub-like (Ubl) molecule interferon-stimulated gene 15 (ISG15) to cellular proteins mediates important innate antiviral responses. Ovarian tumor (OTU) domain proteases from nairoviruses and arteriviruses were recently found to remove these molecules from host proteins, which inhibits Ub and ISG15-dependent antiviral pathways. This contrasts with the Ub-specific activity of known eukaryotic OTU-domain proteases. Here we describe crystal structures of a viral OTU domain from the highly pathogenic Crimean-Congo haemorrhagic fever virus (CCHFV) bound to Ub and to ISG15 at 2.5-Å and 2.3-Å resolution, respectively. The complexes provide a unique structural example of ISG15 bound to another protein and reveal the molecular mechanism of an ISG15 cross-reactive deubiquitinase. To accommodate structural differences between Ub and ISG15, the viral protease binds the ß-grasp folds of Ub and C-terminal Ub-like domain of ISG15 in an orientation that is rotated nearly 75° with respect to that observed for Ub bound to a representative eukaryotic OTU domain from yeast. Distinct structural determinants necessary for binding either substrate were identified and allowed the reengineering of the viral OTU protease into enzymes with increased substrate specificity, either for Ub or for ISG15. Our findings now provide the basis to determine in vivo the relative contributions of deubiquitination and deISGylation to viral immune evasion tactics, and a structural template of a promiscuous deubiquitinase from a haemorrhagic fever virus that can be targeted for inhibition using small-molecule-based strategies.


Assuntos
Citocinas/química , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Peptídeo Hidrolases/química , Ubiquitinas/química , Proteínas Virais/química , Cristalografia por Raios X , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Humanos , Neoplasias Ovarianas , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Ubiquitina/química , Ubiquitina/genética , Ubiquitina/imunologia , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/imunologia , Ubiquitinas/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...