Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265740

RESUMO

Chitinases are enzymes that can break down chitin, a major component of the exoskeleton of insects and fungi. This feature makes them potential biopesticides in agriculture since they are considered a safe and environmentally friendly alternative to synthetic pesticides. In this work, we performed a comparative study between two different bacterial expression strains to produce a recombinant chitinase with improved stability. Escherichia coli strains Origami B and BL21 (DE3) were selected for their distinct cytosolic environment to express BhChitA chitinase of Bacillus halodurans C-125 and to investigate the role of disulfide bond formation and proper folding on its stability and activity. Expression of the recombinant BhChitA in bacterial strain containing oxidative cytosol (Origami B) improved its activity and stability. Although both expression systems have comparable biochemical properties (temperature range 20-80 °C and pH spectrum 3-10), BhChitA expressed in Origami strain seems more stable than expressed in BL21. Furthermore, the optimal expression conditions of the recombinant BhChitA has been carried out at 30 °C during 6 h for the Origami strain, against 20 °C during 2 h for BL21. On the other hand, no significant differences were detected between the two enzymes when the effect of metal ions was tested. These findings correlate with the analysis of the overall structure of BhChitA. The model structure permitted to localize disulfide bond, which form a stable connection between the substrate-binding residues and the hydrophobic core. This link is required for efficient binding of the chitin insertion domain to the substrate. BhChitA exhibited in vitro antifungal effect against phytopathogenic fungi and suppressed necrosis of Botrytis cinerea on detached tomato leaves. In vitro assays showed the influence of BhChitA on growth suppression of Botrytis cinerea (53%) Aspergillus niger (65%), Fusarium graminearum (25%), and Fusarium oxysporum (34%). Our results highlight the importance of the bacterial expression system with oxidative cytosol in producing promising biopesticides that can be applied for post-harvest processing and crop protection.

2.
Biochim Biophys Acta Biomembr ; 1865(7): 184180, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37245861

RESUMO

In phagocytes, superoxide anion (O2-), the precursor of reactive oxygen species, is produced by the NADPH oxidase complex to kill pathogens. Phagocyte NADPH oxidase consists of the transmembrane cytochrome b558 (cyt b558) and four cytosolic components: p40phox, p47phox, p67phox, and Rac1/2. The phagocyte activation by stimuli leads to activation of signal transduction pathways. This is followed by the translocation of cytosolic components to the membrane and their association with cyt b558 to form the active enzyme. To investigate the roles of membrane-interacting domains of the cytosolic proteins in the NADPH oxidase complex assembly and activity, we used giant unilamellar phospholipid vesicles (GUV). We also used the neutrophil-like cell line PLB-985 to investigate these roles under physiological conditions. We confirmed that the isolated proteins must be activated to bind to the membrane. We showed that their membrane binding was strengthened by the presence of the other cytosolic partners, with a key role for p47phox. We also used a fused chimera consisting of p47phox(aa 1-286), p67phox(aa 1-212) and Rac1Q61L, as well as mutated versions in the p47phox PX domain and the Rac polybasic region (PB). We showed that these two domains have a crucial role in the trimera membrane-binding and in the trimera assembly to cyt b558. They also have an impact on O2.- production in vitro and in cellulo: the PX domain strongly binding to GUV made of a mix of polar lipids; and the PB region strongly binding to the plasma membrane of neutrophils and resting PLB-985 cells.


Assuntos
Citocromos b , Fosfolipídeos , Fosfolipídeos/metabolismo , Citocromos b/metabolismo , Fagócitos/metabolismo , NADPH Oxidases/metabolismo , Membrana Celular/metabolismo , Sítios de Ligação
3.
Free Radic Biol Med ; 199: 113-125, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36828293

RESUMO

Poldip2 was shown to be involved in oxidative signaling to ensure certain biological functions. It was proposed that, in VSMC, by interaction with the Nox4-associated membrane protein p22phox, Poldip2 stimulates the level of reactive oxygen species (ROS) production. In vitro, with fractionated membranes from HEK393 cells over-expressing Nox4, we confirmed the up-regulation of NADPH oxidase 4 activity by the recombinant and purified Poldip2. Besides Nox4, the Nox1, Nox2, or Nox3 isoforms are also established partners of the p22phox protein raising the question of their regulation by Poldip2 and of the effect in cells expressing simultaneously different Nox isoforms. In this study, we have addressed this issue by investigating the potential regulatory role of Poldip2 on NADPH oxidase 2, present in phagocyte cells. Unexpectedly, the effect of Poldip2 on phagocyte NADPH oxidase 2 was opposite to that observed on NADPH oxidase 4. Using membranes from circulating resting neutrophils, the ROS production rate of NADPH oxidase 2 was down-regulated by Poldip2 (2.5-fold). The down-regulation effect could not be correlated to the interaction of Poldip2 with p22phox but rather, to the interaction of Poldip2 with the p47phox protein, one of the regulatory proteins of the phagocyte NADPH oxidase. Our results show that the interaction of Poldip2 with p47phox constitutes a novel regulatory mechanism that can negatively modulate the activity of NADPH oxidase 2 by trapping the so-called "adaptor" subunit of the complex. Poldip2 could act as a tunable switch capable of specifically regulating the activities of NADPH oxidases. This selective regulatory role of Poldip2, positive for Nox4 or negative for Nox2 could orchestrate the level and the type of ROS generated by Nox enzymes in the cells.


Assuntos
Proteínas de Membrana , NADPH Oxidases , NADPH Oxidase 4/genética , NADPH Oxidase 2/genética , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Isoformas de Proteínas
4.
Biochim Biophys Acta Mol Cell Res ; 1869(9): 119276, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35489654

RESUMO

The phagocyte NADPH oxidase (NOX2) is a key enzyme of the innate immune system generating superoxide anions (O2•-), precursors of reactive oxygen species. The NOX2 protein complex is composed of six subunits: two membrane proteins (gp91phox and p22phox) forming the catalytic core, three cytosolic proteins (p67phox, p47phox and p40phox) and a small GTPase Rac. The sophisticated activation mechanism of the NADPH oxidase relies on the assembly of cytosolic subunits with the membrane-bound components. A chimeric protein, called 'Trimera', composed of the essential domains of the cytosolic proteins p47phox (aa 1-286), p67phox (aa 1-212) and full-length Rac1Q61L, enables a constitutive and robust NOX2 activity in cells without the need of any stimulus. We employed Trimera as a single activating protein of the phagocyte NADPH oxidase in living cells and examined the consequences on the cell physiology of this continuous and long-term NOX activity. We showed that the sustained high level of NOX activity causes acidification of the intracellular pH, triggers apoptosis and leads to local peroxidation of lipids in the membrane. These local damages to the membrane correlate with the strong tendency of the Trimera to clusterize in the plasma membrane observed by FRET-FLIM microscopy.


Assuntos
Apoptose , NADPH Oxidases , Citosol/metabolismo , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo
5.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054950

RESUMO

Neutrophils play a very key role in the human immune defense against pathogenic infections. The predominant players in this role during the activation of neutrophils are the release of cytotoxic agents stored in the granules and secretory vesicles and the massive production of reactive oxygen species (ROS) initiated by the enzyme NADPH oxidase. In addition, in living organisms, cells are continuously exposed to endogenous (inflammations, elevated neutrophil presence in the vicinity) and exogenous ROS at low and moderate levels (travels by plane, radiotherapy, space irradiation, blood banking, etc.). To study these effects, we used ROS induced by gamma radiation from low (0.2 Gy) to high (25 Gy) dose levels on PLB-985 cells from a myeloid cell line differentiated to neutrophil-like cells that are considered a good alternative to neutrophils. We determined a much longer lifetime of PLB-985 cells than that of neutrophils, which, as expected, decreased by increasing the irradiation dose. In the absence of any secondary stimulus, a very low production of ROS is detected with no significant difference between irradiated and non-irradiated cells. However, in phagocytosing cells, irradiation doses above 2 Gy enhanced oxidative burst in PLB-985 cells. Whatever the irradiation dose, NADPH oxidase devoid of its cytosolic regulatory units is observed at the plasma membrane in irradiated PLB-985 cells. This result is different from that observed for irradiated neutrophils in which irradiation also induced a translocation of regulatory subunits suggesting that the signal transduction mechanism or pathway operate differently in both cells.


Assuntos
Biomarcadores , Membrana Celular/metabolismo , Citocromos b/metabolismo , Estresse Oxidativo , Fagócitos/metabolismo , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Ativação Enzimática , Raios gama , Humanos , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Fagócitos/imunologia , Fagócitos/efeitos da radiação , Transporte Proteico , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória
6.
Front Chem ; 9: 650651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017816

RESUMO

NOX5 is a member of the NADPH oxidase family which is dedicated to the production of reactive oxygen species. The molecular mechanisms governing transmembrane electron transfer (ET) that permits to shuttle electrons over the biological membrane have remained elusive for a long time. Using computer simulations, we report conformational dynamics of NOX5 embedded within a realistic membrane environment. We assess the stability of the protein within the membrane and monitor the existence of cavities that could accommodate dioxygen molecules. We investigate the heme-to-heme electron transfer. We find a reaction free energy of a few tenths of eV (ca. -0.3 eV) and a reorganization free energy of around 1.1 eV (0.8 eV after including electrostatic induction corrections). The former indicates thermodynamically favorable ET, while the latter falls in the expected values for transmembrane inter-heme ET. We estimate the electronic coupling to fall in the range of the µeV. We identify electron tunneling pathways showing that not only the W378 residue is playing a central role, but also F348. Finally, we reveal the existence of two connected O2-binding pockets near the outer heme with fast exchange between the two sites on the nanosecond timescale. We show that when the terminal heme is reduced, O2 binds closer to it, affording a more efficient tunneling pathway than when the terminal heme is oxidized, thereby providing an efficient mechanism to catalyze superoxide production in the final step. Overall, our study reveals some key molecular mechanisms permitting reactive oxygen species production by NOX5 and paves the road for further investigation of ET processes in the wide family of NADPH oxidases by computer simulations.

7.
Free Radic Biol Med ; 164: 76-84, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33387605

RESUMO

Neutrophils are key cells from the innate immune system that destroy invading bacteria or viruses, thanks mainly to the non-mitochondrial reactive oxygen species (ROS) generated by the enzyme NADPH oxidase. Our aim was to study the response of neutrophils to situations of oxidative stress with emphasis on the impact on the NADPH oxidase complex. To mimic oxidative stress, we used gamma irradiation that generated ROS (OH•, O2•- and H2O2) in a quantitative controlled manner. We showed that, although irradiation induces shorter half-lives of neutrophil (reduced by at least a factor of 2), it triggers a pre-activation of surviving neutrophils. This is detectable by the production of a small but significant amount of superoxide anions, proportional to the dose (about 3 times that of sham). Investigations at the molecular level showed that this ROS increase was generated by the NADPH oxidase enzyme after neutrophils irradiation. The NADPH oxidase complex undergoes an incomplete assembly which includes p47phox and p67phox but excludes the G-protein Rac. Importantly, this irradiation-induced pre-activation is capable of considerably improving neutrophil reactivity. Indeed, we have observed that this leads to an increase in the production of ROS and the capacity of phagocytosis, leading to the conclusion that radiation induced ROS clearly behave as neutrophil primers.


Assuntos
NADPH Oxidases , Neutrófilos , Radiação , Espécies Reativas de Oxigênio , Humanos , Peróxido de Hidrogênio , NADPH Oxidases/genética , Fosfoproteínas , Superóxidos
8.
Med Sci (Paris) ; 37(1): 97-100, 2021 Jan.
Artigo em Francês | MEDLINE | ID: mdl-33492225

RESUMO

TITLE: PolDIP2, une protéine clé de la régulation du fonctionnement mitochondrial et du métabolisme cellulaire. ABSTRACT: Pour la sixième année, dans le cadre du module d'enseignement « Physiopathologie de la signalisation ¼ proposé par l'université Paris-sud, les étudiants du Master « Biologie Santé ¼ de l'université Paris-Saclay se sont confrontés à l'écriture scientifique. Ils ont sélectionné une quinzaine d'articles scientifiques récents dans le domaine de la signalisation cellulaire présentant des résultats originaux, via des approches expérimentales variées, sur des thèmes allant des relations hôte-pathogène aux innovations thérapeutiques, en passant par la signalisation hépatique et le métabolisme. Après un travail préparatoire réalisé avec l'équipe pédagogique, les étudiants, organisés en binômes, ont ensuite rédigé, guidés par des chercheurs, une Nouvelle soulignant les résultats majeurs et l'originalité de l'article étudié. Ils ont beaucoup apprécié cette initiation à l'écriture d'articles scientifiques et, comme vous pourrez le lire, se sont investis dans ce travail avec enthousiasme ! Trois de ces Nouvelles sont publiées dans ce numéro, les autres le seront dans des prochains numéros.


Assuntos
Metabolismo Energético/genética , Mitocôndrias/fisiologia , Proteínas Nucleares/fisiologia , Animais , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Ciclo do Ácido Cítrico/genética , Humanos , Lipoilação/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
9.
Biochim Biophys Acta Gen Subj ; 1865(1): 129767, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33141062

RESUMO

BACKGROUND: The production of superoxide anions (O2•-) by the phagocyte NADPH oxidase complex has a crucial role in the destruction of pathogens in innate immunity. Majority of in vitro studies on the functioning of NADPH oxidase indirectly follows the enzymatic reaction by the superoxide reduction of cytochrome c (cyt c). Only few reports mention the alternative approach consisting in measuring the NADPH consumption rate. When using membrane vesicles of human neutrophils, the enzyme specific activity is generally found twice higher by monitoring the NADPH oxidation than by measuring the cyt c reduction. Up to now, the literature provides only little explanations about such discrepancy despite the critical importance to quantify the exact enzyme activity. METHODS: We deciphered the reasons of this disparity in studying the role of key parameters, including. cyt c and arachidonic acid concentrations, in conjunction with an ionophore, a detergent and using Clark electrode to measure the O2 consumption rates. RESULTS: Our results show that the O2•- low permeability of the vesicle membrane as well as secondary reactions (O2•- and H2O2 disproportionations) are strong clues to shed light on this inconsistency. CONCLUSION AND GENERAL SIGNIFICANCE: These results altogether indicate that the cyt c reduction method underestimates the accurate Nox2 activity.


Assuntos
NADPH Oxidase 2/metabolismo , Ácido Araquidônico/metabolismo , Células Cultivadas , Citocromos c/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , NADP/metabolismo , Neutrófilos/metabolismo , Oxirredução , Consumo de Oxigênio
10.
RSC Adv ; 10(30): 17930-17941, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35515592

RESUMO

Flavohemoglobins (fHbs) are heme proteins found in prokaryotic and eukaryotic microbes. They are involved in NO detoxification through an NO˙ dioxygenase mechanism. The N-terminal heme globin domain allows for binding of gaseous ligands whereas a C-terminal NADH/FADH binding domain facilitates association of redox cofactors necessary for ligand reduction. The NO˙ dioxygenase function is important in facilitating immune resistance by protecting the cell from nitrosative stress brought about by a host organism; as a result, bacterial flavoHbs have recently been considered as targets for the development of new antibiotics. Here, photoacoustic calorimetry and transient absorption spectroscopy have been used to characterize energetics, structural dynamics, and kinetics of CO migration within bacterial flavoHbs from Ralstonia eutropha (FHP) and Staphylococcus aureus (HMPSa) in the presence and absence of antibiotic azole compounds. In FHP, the ligand photo-release is associated with ΔH = 26.2 ± 7.0 kcal mol-1 and ΔV = 25.0 ± 1.5 mL mol-1 while in HMPSa, ΔH = 34.7 ± 8.0 kcal mol-1 and ΔV = 28.6 ± 17 mL mol-1 were observed, suggesting distinct structural changes associated with ligand escape from FHP and HMPSa. In the presence of ketoconazole, the CO escape leads to a more negative enthalpy change and volume change whereas association of miconazole to FHP or HMPSa does not impact the reaction volume. These data are in agreement with the computational results that propose distinct binding sites for ketoconazole and miconazole on CO bound FHP. Miconazole or ketoconazole binding to either protein has only a negligible impact on the CO association rates, indicating that azole drugs do not impact flavoHbs interactions with gaseous ligands but may inhibit the NOD activity through preventing the electron transfer between FAD and heme cofactors.

11.
Extremophiles ; 23(5): 529-547, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31236718

RESUMO

The present study investigates the purification and biochemical characterization of a novel extracellular serine alkaline protease, subtilisin (called SAPN) from Melghiribacillus thermohalophilus Nari2AT. The highest yield of protease (395 IU/g) with white shrimp shell by-product (40 g/L) as a unique source of nutriments in the growth medium was achieved after 52 h at 55 °C. The monomeric enzyme of about 30 kDa was purified to homogeneity by ammonium sulfate fractionation, heat treatment, followed by sequential column chromatographies. The optimum pH and temperature values for subtilisin activity were pH 10 and 75 °C, respectively, and half lives of 9 and 5 h at 80 and 90 °C, respectively. The sequence of the 25 NH2-terminal residues pertaining of SAPN exhibited a high homology with those of Bacillus subtilisins. The inhibition by DFP and PMSF indicates that this enzyme belongs to the serine proteases family. SAPN was found to be effective in the deproteinization (DDP %) of blue swimming crab (Portunus segnis) and white shrimp (Metapenaeus monoceros) by-products, with a degree of 65 and 82%, respectively. The commercial and the two chitins obtained in this work showed a similar peak pattern in Fourier-Transform Infrared (FTIR) analysis, suggesting that SAPN is suitable for the bio-production of chitin from shell by-products.


Assuntos
Bacillaceae/enzimologia , Proteínas de Bactérias/química , Quitina/química , Tolerância ao Sal , Subtilisina/química , Termotolerância , Exoesqueleto/química , Animais , Proteínas de Bactérias/metabolismo , Crustáceos/química , Estabilidade Enzimática , Hidrólise , Subtilisina/metabolismo
12.
Methods Mol Biol ; 1982: 75-101, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31172467

RESUMO

The NADPH oxidase NOX2 complex consists of assembled cytosolic and redox membrane proteins. In mammalian cells, natural arachidonic acid (cis-AA), released by activated phospholipase-A2, plays an important role in the activation of the NADPH oxidase, but the mechanism of action of cis-AA is still a matter of debate. In cell-free systems, cis-AA is commonly used for activation although its structural effects are still unclear. Undoubtedly cis-AA participates in the synergistic multi-partner assembly that can be hardly studied at the molecular level in vivo due to cellular complexity. The capacity of this anionic amphiphilic fatty acid to activate the oxidase is mainly explained by its ability to disrupt intramolecular bonds, mimicking phosphorylation events in cell signaling and therefore allowing protein-protein interactions. Interestingly the geometric isomerism of the fatty acid and its purity are crucial for optimal superoxide production in cell-free assays. Indeed, optimal NADPH oxidase assembly was hampered by the substitution of the cis form by the trans forms of AA isomers (Souabni et al., BBA-Biomembranes 1818:2314-2324, 2012). Structural analysis of the changes induced by these two compounds, by circular dichroism and by biochemical methods, revealed differences in the interaction between subunits. We describe how the specific geometry of AA plays an important role in the activation of the NOX2 complex.


Assuntos
Ácido Araquidônico/metabolismo , NADPH Oxidases/metabolismo , Fagócitos/enzimologia , Ácido Araquidônico/química , Fracionamento Celular , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Sistema Livre de Células , Colorimetria , Ativação Enzimática , Isomerismo , Estrutura Molecular , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/química , NADPH Oxidases/isolamento & purificação , Neutrófilos/enzimologia , Fagócitos/imunologia , Proteínas Recombinantes de Fusão , Análise Espectral
13.
Free Radic Biol Med ; 123: 107-115, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793040

RESUMO

In microorganisms, flavohemoglobins (FHbs) containing FAD and heme (Fe3+, metHb) convert NO. into nitrate at the expense of NADH and O2. FHbs contribute to bacterial resistance to nitrosative stress. Therefore, inhibition of FHbs functions may decrease the pathogen virulence. We report here a kinetic study of the reduction of quinones and nitroaromatic compounds by S. aureus FHb. We show that this enzyme rapidly reduces quinones and nitroaromatic compounds in a mixed single- and two-electron pathway. The reactivity of nitroaromatics increased upon an increase in their single-electron reduction potential (E17), whereas the reactivity of quinones poorly depended on their E17 with a strong preference for a 2-hydroxy-1,4-naphthoquinone structure. The reaction followed a 'ping-pong' mechanism. In general, the maximal reaction rates were found lower than the maximal presteady-state rate of FAD reduction by NADH and/or of oxyhemoglobin (HbFe2+O2) formation (~130 s-1, pH 7.0, 25 °C), indicating that the enzyme turnover is limited by the oxidative half-reaction. The turnover studies showed that quinones prefreqently accept electrons from reduced FAD, and not from HbFe2+O2. These results suggest that quinones and nitroaromatics act as 'subversive substrates' for FHb, and may enhance the cytotoxicity of NO. by formation of superoxide and by diverting the electron flux coming from reduced FAD. Because quinone reduction rate was increased by FHb inhibitors such as econazole, ketoconazole, and miconazole, their combined use may represent a novel chemotherapeutical approach.


Assuntos
Proteínas de Bactérias/metabolismo , Hemeproteínas/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , NAD/metabolismo , Nitrocompostos/metabolismo , Quinonas/metabolismo , Staphylococcus aureus/metabolismo , Transporte de Elétrons , Humanos , Concentração de Íons de Hidrogênio , Cinética , Especificidade por Substrato
14.
Mech Ageing Dev ; 172: 30-34, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29103982

RESUMO

The role of NADPH oxidase in ageing is debated because of the dual roles of free radicals, toxic though necessary. In this paper we summarize some results about two aspects linked to the regulation of the activity of phagocyte NADPH oxidase (Nox2), encountered frequently in elderly people: inflammation and hypercholesterolemia. In the presence of a high amount of reactive oxygen species (ROS) created by itself or by any other source, the enzyme activity is mostly lowered. Oxidation of the membrane and/or of one of the cytosolic partners could be responsible for this loss of activity. However using a cell free system, we had also shown that a low amount of ROS could activate this enzyme. Similarly, cholesterol has a similar dual role, either activating or inhibiting. In in vitro cell free system with neutrophil membranes from healthy donors, the addition, as well as the removal of cholesterol, diminishes the Nox2 activity. The activity of Nox2 is lowered in neutrophils of untreated hypercholesterolemic patients. Finally oxysterols (25-hydroxy-cholesterol or 5α, 6α - epoxy-cholesterol) do not induce effects different from that of non-oxidized cholesterol. These findings are in agreement with the Janus role of NADPH oxidase, the main source of non-mitochondrial ROS.


Assuntos
Envelhecimento/metabolismo , NADPH Oxidase 2/metabolismo , Estresse Oxidativo , Fagócitos/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/patologia , Animais , Membrana Celular/enzimologia , Membrana Celular/patologia , Humanos , Hipercolesterolemia/enzimologia , Hipercolesterolemia/patologia , Inflamação/enzimologia , Inflamação/patologia , Oxirredução , Oxisteróis/metabolismo , Fagócitos/patologia
15.
Free Radic Biol Med ; 113: 470-477, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29079525

RESUMO

During the phagocytosis of pathogens by phagocyte cells, the NADPH oxidase complex is activated to produce superoxide anion, a precursor of microbial oxidants. The activated NADPH oxidase complex from phagocytes consists in two transmembrane proteins (Nox2 and p22phox) and four cytosolic proteins (p40phox, p47phox, p67phox and Rac1-2). In the resting state of the cells, these proteins are dispersed in the cytosol, the membrane of granules and the plasma membrane. In order to synchronize the assembly of the cytosolic subunits on the membrane components of the oxidase, a fusion of the cytosolic proteins p47phox, p67phox and Rac1 named trimera was constructed. The trimera investigated in this paper is composed of the p47phox segment 1-286, the p67phox segment 1-212 and the mutated Rac1(Q61L). We demonstrate that the complex trimera-cyt b558 is functionally comparable to the one containing the separated subunits. Each of the subunits p47phox, p67phox and Rac1Q61L has kept its own activating property. The trimera is produced in an activated conformation as seen by circular dichroism. However, the presence of amphiphile is still necessary in a cell-free system to trigger superoxide anion production. The COS7gp91-p22 cells expressing the trimera produce continuously superoxide anion at high rate. This constitutive activity in cells can be of particular interest for understanding the NADPH oxidase functioning independently of signaling pathways.


Assuntos
Ácido Araquidônico/metabolismo , NADPH Oxidases/metabolismo , Fosfoproteínas/metabolismo , Subunidades Proteicas/metabolismo , Superóxidos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Sistema Livre de Células , Chlorocebus aethiops , Expressão Gênica , Humanos , Cinética , NADP/metabolismo , NADPH Oxidases/genética , Neutrófilos/citologia , Neutrófilos/metabolismo , Fosfoproteínas/genética , Multimerização Proteica , Subunidades Proteicas/genética , Proteínas rac1 de Ligação ao GTP/genética
16.
Methods Mol Biol ; 1635: 27-43, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28755362

RESUMO

Activation of phagocyte cells from an innate immune system is associated with a massive consumption of molecular oxygen to generate highly reactive oxygen species (ROS) as microbial weapons. This is achieved by a multiprotein complex, the so-called NADPH oxidase. The activity of phagocyte NADPH oxidase relies on an assembly of more than five proteins, among them the membrane heterodimer named flavocytochrome b 558 (Cytb 558), constituted by the tight association of the gp91phox (also named Nox2) and p22phox proteins. The Cytb 558 is the membrane catalytic core of the NADPH oxidase complex, through which the reducing equivalent provided by NADPH is transferred via the associated prosthetic groups (one flavin and two hemes) to reduce dioxygen into superoxide anion. The other major proteins (p47phox, p67phox, p40phox, Rac) requisite for the complex activity are cytosolic proteins. Thus, the NADPH oxidase functioning relies on a synergic multi-partner assembly that in vivo can be hardly studied at the molecular level due to the cell complexity. Thus, a cell-free assay method has been developed to study the NADPH oxidase activity that allows measuring and eventually quantifying the ROS generation based on optical techniques following reduction of cytochrome c. This setup is a valuable tool for the identification of protein interactions, of crucial components and additives for a functional enzyme. Recently, this method was improved by the engineering and the production of a complete recombinant NADPH oxidase complex using the combination of purified proteins expressed in bacterial and yeast host cells. The reconstitution into artificial membrane leads to a fully controllable system that permits fine functional studies.


Assuntos
Sistema Livre de Células/enzimologia , NADPH Oxidases/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes/metabolismo , Animais , Membrana Celular/metabolismo , Citocromos c/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , NADPH Oxidases/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/genética
17.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt B): 3520-3530, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27378459

RESUMO

BACKGROUND: Phagocytes kill ingested microbes by exposure to high concentrations of toxic reactive species generated by NADPH-oxidases. This membrane-bound electron-transferring enzyme is tightly regulated by cellular signaling cascades. So far, molecular and biophysical studies of the NADPH-oxidase were performed over limited temperature ranges, which weaken our understanding of immune response or inflammatory events. In this work, we have inspected the influence of temperature and lipid membrane properties on the NADPH-oxidase activity using a system free of cell complexity. METHODS: We have extended the experimental conditions of the accepted model for NADPH-oxidase activity, the so-called cell-free assay, to a large temperature range (10-40°C) using different membrane compositions (subcellular compartments or liposomes). RESULTS: A remarkable increase of superoxide production rate was observed with rising temperature. Synchrotron radiation circular dichroism data showed that this is not correlated with protein secondary structure changes. When lipid bilayers are in fluid phase, Arrhenius plots of the oxidase activity showed linear relationships with small activation energy (Ea), while when in solid phase, high Ea was found. The sterol content modulates kinetic and thermodynamic parameters. CONCLUSION: High temperature promotes the rate of superoxide production. The key element of this enhancement is related to membrane properties such as thickness and viscosity and not to protein structural changes. Membrane viscosity that can be driven by sterols is a paramount parameter of Ea of NADPH oxidase activity. The membrane bilayer state modulated by its sterol content may be considered locally as an enzyme regulator. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.


Assuntos
Membrana Celular/metabolismo , Fenômenos Químicos , NADPH Oxidases/metabolismo , Ácido Araquidônico/metabolismo , Dicroísmo Circular , Retículo Endoplasmático/metabolismo , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Pichia , Estabilidade Proteica , Proteolipídeos/metabolismo , Proteínas Recombinantes/metabolismo , Esteróis/metabolismo , Síncrotrons , Temperatura
18.
FEBS J ; 283(15): 2896-910, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27284000

RESUMO

The NADPH oxidase is the sole enzymatic complex that produces, in a controlled way, superoxide anions. In phagocytes, it is constituted by the assembly of four cytosolic (p67(phox) , p47(phox) , p40(phox) and Rac) and two membrane (p22(phox) and Nox2) proteins. In response to pro-inflammatory mediators, the NADPH oxidase is activated. In cells, arachidonic acid (cis-AA), released by activated phospholipase A2, also plays a role in activation of the NADPH oxidase complex, but the mechanism of action of cis-AA is still a matter for debate. In cell-free systems, cis-AA is commonly used for activation. We have shown previously that trans-AA isomers were unable to activate the NADPH oxidase complex. Here, we aim to evaluate the structural changes in p47(phox) and p67(phox) induced by AA. The structural impact of both AA isomers on both cytosolic proteins was investigated by the accessibility of the thiol group and by circular dichroism in the far-UV for global folds. cis-AA induces secondary structure changes of p47(phox) and p67(phox) , while the trans isomer does not, suggesting that the changes observed are of importance for the activation process of these proteins. While five of the nine thiol groups in p67(phox) and all of them in p47(phox) have low access to the solvent when proteins are alone in solution, all of them become fully accessible when proteins are together. In conclusion, the secondary structures of p47(phox) and p67(phox) are both dependent on the presence of the partner protein in solution and on the presence of the activator molecule cis-AA.


Assuntos
Ácido Araquidônico/química , NADPH Oxidases/química , Fosfoproteínas/química , Compostos de Sulfidrila/química , Dicroísmo Circular , Humanos , NADPH Oxidases/genética , Estrutura Secundária de Proteína , Deleção de Sequência
19.
PLoS One ; 10(12): e0144829, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26714308

RESUMO

Titanium dioxide (TiO2) anatase nanoparticles (NPs) are metal oxide NPs commercialized for several uses of everyday life. However their toxicity has been poorly investigated. Cellular internalization of NPs has been shown to activate macrophages and neutrophils that contribute to superoxide anion production by the NADPH oxidase complex. Transmission electron micrososcopy images showed that the membrane fractions were close to the NPs while fluorescence indicated an interaction between NPs and cytosolic proteins. Using a cell-free system, we have investigated the influence of TiO2 NPs on the behavior of the NADPH oxidase. In the absence of the classical activator molecules of the enzyme (arachidonic acid) but in the presence of TiO2 NPs, no production of superoxide ions could be detected indicating that TiO2 NPs were unable to activate by themselves the complex. However once the NADPH oxidase was activated (i.e., by arachidonic acid), the rate of superoxide anion production went up to 140% of its value without NPs, this effect being dependent on their concentration. In the presence of TiO2 nanoparticles, the NADPH oxidase produces more superoxide ions, hence induces higher oxidative stress. This hyper-activation and the subsequent increase in ROS production by TiO2 NPs could participate to the oxidative stress development.


Assuntos
NADPH Oxidases/metabolismo , Nanopartículas/toxicidade , Superóxidos/metabolismo , Titânio/química , Titânio/toxicidade , Animais , Bovinos , Humanos , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Fatores de Tempo
20.
Biochimie ; 107 Pt A: 33-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25448770

RESUMO

The NADPH-oxidase complex, which plays beneficial or detrimental role in the inflammatory and degenerative diseases, is a membrane multi-subunit complex tightly regulated in order to produce superoxide anions, precursor of oxygen reactive species (ROS), in cells. The flavocytochrome b(558) (Cytb(558)) is the catalytic core of the NADPH oxidase which consists of two membrane proteins gp91(phox) (highly glycosylated) and p22(phox). In this work we took advantage of heterologous yeast cells engineered to express wild-type bovine Cytb(558) to analyze the properties of the NADPH oxidase activity during the biosynthesis processing steps of gp91(phox) and p22(phox) within endoplasmic reticulum (ER) and plasma membrane (Pmb). Our data showed that, in yeast, the heterodimerization at the endoplasmic reticulum membranes was concomitant with high level glycosylation of gp91(phox) and the heme acquisition. This study also demonstrated that the phagocyte NADPH oxidase was active at ER membranes and that this activity was surprisingly higher at the ER compared to the Pmb membranes. We have correlated these findings with the presence of sterols in the plasma membranes and their absence in ER membranes. This correlation was confirmed by decreased superoxide anion production rates in proteoliposomes supplemented with ergosterol or cholesterol. Our data support the idea that membrane environment might be determinant for ROS regulation and that sterols could directly interact with the membrane proteins of the NADPH oxidase constraining its capacity to produce superoxide anions.


Assuntos
Grupo dos Citocromos b/metabolismo , Dimiristoilfosfatidilcolina/metabolismo , NADPH Oxidases/metabolismo , Proteínas Recombinantes/metabolismo , Esteróis/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Bovinos , Membrana Celular/química , Membrana Celular/metabolismo , Grupo dos Citocromos b/química , Grupo dos Citocromos b/genética , Dimiristoilfosfatidilcolina/química , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Cinética , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , NADP/metabolismo , NADPH Oxidases/química , NADPH Oxidases/genética , Pichia/genética , Pichia/metabolismo , Proteolipídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/química , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...