Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 25(3): e202300781, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117648

RESUMO

Heterogeneous chemoenzymatic catalysts differing in their spatial organization and relative orientation of their enzymatic laccase and Pd units confined into macrocellular silica foams were tested on veratryl alcohol oxidation. When operating under continuous flow, we show that the catalytic efficiency of hybrids is significantly enhanced when the Pd(II) complex is combined with a laccase exhibiting a surface located lysine next to the T1 oxidation site of the enzyme.


Assuntos
Lacase , Lacase/metabolismo , Oxirredução , Conformação Molecular
2.
Langmuir ; 39(46): 16385-16394, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37947824

RESUMO

High internal phase emulsions (HIPEs) have templated self-standing porous carbonaceous materials (carboHIPEs) while employing Kraft Black Liquor, a paper milling industry byproduct, as a carbon precursor source. As such, the starting emulsion has been prepared through a laboratory-made homogenizer, while native materials have been characterized at various length scales either with Raman spectrometry, X-ray diffraction (XRD), mercury intrusion porosimetry, and nitrogen absorption. After thermal carbonization, specific surface areas ranging from ∼600 m2 g-1 to 1500 m2 g-1 have been reached while maintaining a monolithic character. Despite a poor graphitization yield, the carbonaceous materials offer good electronic transport properties, reaching 31 S m-1. When tested toward energy storage applications, the native unwashed materials revealed a hydrogen storage of 0.07 wt % at 40 bar and room temperature (RT), while hydrogen retention is reaching 0.37 wt % at 40 bar and RT for the washed sample. When employed as supercapacitor electrodes, these carbonaceous foams are able to deliver high capacities of ∼140 F/g at 1 A/g, thereby matching the ones obtained from a commercial carbon reference, while additionally providing a restored remnant capacity of 120 F/g at 2 A/g over 5000 cycle numbers.

3.
Chempluschem ; 88(5): e202300156, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37145031

RESUMO

This study investigates the site-directed immobilization of a hybrid catalyst bearing a biquinoline-based-Pd(II) complex (1) and a robust laccase within cavities of a silica foam to favor veratryl alcohol oxidation. We performed the grafting of 1 at a unique surface located lysine of two laccase variants, either at closed (1⊂UNIK157 ) or opposite position (1⊂UNIK71 ) of the enzyme oxidation site. After immobilization into the cavities of silica monoliths bearing hierarchical porosity, we show that catalytic activity is dependent on the orientation and loading of each hybrid, 1⊂UNIK157 being twice as active than 1⊂UNIK71 (203 TON vs 100 TON) when operating under continuous flow. These systems can be reused 5 times, with an operational activity remaining as high as 40 %. We show that the synergy between 1 and laccase can be tuned within the foam. This work is a proof of concept for controlling the organization of a heterogeneous hybrid catalyst using a Pd/laccase/silica foam.

4.
Langmuir ; 39(11): 3871-3882, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36878006

RESUMO

Three-dimensional photoactive self-standing porous materials have been synthesized through the integration of soft chemistry and colloids (emulsions, lyotrope mesophases, and P25 titania nanoparticles). Final multiscale porous ceramics bear 700-1000 m2 g-1 of micromesoporosity depending on the P25 nanoparticle contents. The applied thermal treatment does not affect the P25 anatase/rutile allotropic phase ratio. Photonic investigations correlated with the foams' morphologies suggest that the larger amount of TiO2 that is introduced, the larger the walls' density and the smaller the mean size of the void macroscopic diameters, with both effects inducing a reduction of the photon transport mean free path (lt) with the P25 content increase. A light penetration depth in the range of 6 mm is reached, thus depicting real 3D photonic scavenger behavior. The 3D photocatalytic properties of the MUB-200(x) series, studied in a dynamic "flow-through" configuration, show that the highest photoactivity (concentration of acetone ablated and concentration of CO2 formed) is obtained with the highest monolith height (volume) while providing an average of 75% mineralization. These experimental results validate the fact that these materials, bearing 3D photoactivity, are paving the path for air purification operating with self-standing porous monolith-type materials, which are much easier to handle than powders. As such, the photocatalytic systems can now be advantageously miniaturized, thereby offering indoor air treatment within vehicles/homes while drastically limiting the associated encumbrance. This volumetric counterintuitive acting mode for light-induced reactions may find other relevant advanced applications for photoinduced water splitting, solar fuel, and dye-sensitized solar cells while both optimizing photon scavenging and opening the path for the miniaturization of the processes where encumbrance or a foot-print penalty would be advantageously circumvented.

5.
ACS Appl Mater Interfaces ; 14(11): 13305-13316, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258941

RESUMO

Alkylation of aromatic hydrocarbons is among the most industrially important reactions, employing acid catalysts such as AlCl3, H2SO4, HF, or H3PO4. However, these catalysts present severe drawbacks, such as low selectivity and high corrosiveness. Taking advantage of the intrinsic high acid strength and Lewis and Brønsted acidity of niobium oxide, we have designed the first series of Nb2O5-SiO2(HIPE) monolithic catalysts bearing multiscale porosity through the integration of a sol-gel process and the physical chemistry of complex fluids. The MUB-105 series offers efficient solvent-free heterogeneous catalysis toward Friedel-Crafts monoalkylation and -acylation reactions, where 100% conversion has been reached at 140 °C while cycling. Alkylation reactions employing the MUB-105(1) catalyst have a maximum turnover number (TON) of 104 and a turnover frequency (TOF) of 9 h-1, whereas for acylation, MUB-105(1) and MUB-105(2) yield maximum TON and TOF values of 107 and 11 h-1, respectively. Moreover, the catalysts are selective, producing equal amounts of ortho- and para-substituted alkylated products and greater than 90% of the para-substituted acylated product. The highest catalytic efficiencies are obtained for the MUB-105(1) catalyst, bearing the smallest Nb2O5 particle sizes, lowest Nb2O5 content, and the highest amorphous character. The catalysts presented here are in a monolithic self-standing state, offering easy handling, reusability, and separation from the final products.

6.
Biotechnol Rep (Amst) ; 31: e00645, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34189063

RESUMO

We immobilized a fungal laccase with only two spatially close lysines available for functionalization into macrocellular Si(HIPE) monoliths for the purpose of continuous flow catalysis. Immobilization (30-45 % protein immobilization yields) was obtained using a covalent bond forming reaction between the enzyme and low glutaraldehyde (0.625 % (w/w)) functionalized foams. Testing primarily HBT-mediated RB5 dye decolorization in continuous flow reactors, we show that the activity of the heterogeneous catalyst is comparable to its homogeneous counterpart. More, its operational activity remains as high as 60 % after twelve consecutive decolorization cycles as well as after one-year storage, performances remarkable for such a material. We further immobilized two variants of the laccase containing a unique lysine: one located in the vicinity of the substrate oxidation site (K157) and one at the opposite side of this oxidation site (K71) to study the effect of the proximity of the Si(HIPE) surface on enzyme activity. Comparing activities on different substrates for monoliths with differentially oriented catalysts, we show a twofold discrimination for ABTS relative to ascorbate. This study provides ground for the development of neo-functionalized materials that beyond allowing stability and reusability will become synergic partners in the catalytic process.

7.
J Colloid Interface Sci ; 533: 385-400, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30172149

RESUMO

Traditional porous monoliths Si(HIPE) (High Internal Phase Emulsion), prepared from the Tetradecyltrimethylammonium Bromide (TTAB)/dodecane/water system, offer high specific surface area, mainly due to microporosity. Aside, mesoporous materials SBA-15, prepared from Pluronic P123, have a high specific surface area, but are obtained as powder, which limits their applications. Starting from the mixed TTAB-P123 surfactant, it is expected to tune the mesoporosity of Si(HIPE), while keeping their monolithic character. The ternary TTAB/P123/water phase diagram was established by varying the weight ratio between these two surfactants. The micellar structure as well as the structural parameters of the liquid crystal domains were determined by SAXS (Small Angle X-ray Scattering). The effect of dodecane solubilization was also investigated and concentrated emulsions were formulated from the (P123/TTAB)/dodecane/water systems. After this soft matter dedicated study, the acquired knowledge was transferred toward the hierarchical porous silica generations, where the sol-gel process is involved. Mixing P123 with TTAB, macro-mesoporous monolithic silica with an enhanced contribution of the specific surface area due to mesoporosity can be prepared. The variation of the TTAB/P123 weight ratio allows controlling the porosity at the mesoscale. Moreover, the macroporosity can be tuned by changing the preparation method, by mixing either the two micellar solutions or directly the two surfactants prior the emulsification process.

8.
Enzyme Microb Technol ; 120: 77-83, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30396402

RESUMO

We present a new heterogeneous biocatalyst based on the grafting of Bilirubin Oxidase from Bacillus pumilus into macrocellular Si(HIPE) materials dedicated to water treatment. Due to the host intrinsic high porosity and monolithic character, on-line catalytic process is reached. We thus used this biocatalyst toward uni-axial flux decolorizations of Congo Red and Remazol Brilliant Blue (RBBR) at two different pH (4 and 8.2), both in presence or absence of redox mediator. In absence of redox mediators, 40% decolorization efficiency was reached within 24 h at pH 4 for Congo Red and 80% for RBBR at pH 8.2 in 24 h. In presence of 10µM ABTS, it respectively attained 100% efficiency after 2h and 12h. We have also demonstrated that non-toxic species were generated upon dyes decolorization. These results show that unlike laccases, this new biocatalyst exhibits excellent decolorization properties over a wide range of pH. Beyond, this enzymatic-based heterogeneous catalyst can be reused during two months being simply stored at room temperature while maintaining its decolorization efficiency. This study shows that this biocatalyst is a promising and robust candidate toward wastewater treatments, both in acidic and alkaline conditions where in the latter efficient decolorization strategies were still missing.


Assuntos
Bacillus pumilus/enzimologia , Biodegradação Ambiental , Corantes/química , Corantes/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Dióxido de Silício/química , Catálise , Sistemas On-Line , Oxirredução
9.
Chem Rec ; 18(7-8): 776-787, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29194938

RESUMO

With this personal account we show how the Integrative Chemistry, when combining the sol-gel process and concentrated emulsions, allows to trigger inorganic, hybrid or living materials when dedicated toward heterogeneous catalysis applications. In here we focus on 3D-macrocellular monolithic foams bearing hierarchical porosities and applications thereof toward heterogeneous catalysis where both activities and mass transport are enhanced. We thereby first depict the general background of emulsions, focusing on concentrated ones, acting as soft templates for the design of solid (HIPE) foams, HIPE being the acronym for High Internal Phase Emulsions while encompassing both sol-gel and polymer chemistry. Secondly we extend this approach toward the design of inorganic cellular materials labeled Si(HIPE) and hybrid organic-inorganic foams, labeled Organo-Si(HIPE), where heterogeneous catalysis applications are addressed considering acidic, metallic, enzymatic and bacterial-based modified Si-HIPE. Along, we will show how the fluid hydrodynamic within the macrocellular foams is offering advanced "out of the box" heterogeneous catalytic capabilities.

10.
Chemistry ; 23(67): 17103-17117, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28949424

RESUMO

The design of Si-(B)-C materials is investigated, with detailed insight into the precursor chemistry and processing, the precursor-to-ceramic transformation, and the ceramic microstructural evolution at high temperatures. In the early stage of the process, the reaction between allylhydridopolycarbosilane (AHPCS) and borane dimethyl sulfide is achieved. This is investigated in detail through solid-state NMR and FTIR spectroscopy and elemental analyses for Si/B ratios ranging from 200 to 30. Boron-based bridges linking AHPCS monomeric fragments act as crosslinking units, extending the processability range of AHPCS and suppressing the distillation of oligomeric fragments during the low-temperature pyrolysis regime. Polymers with low boron contents display appropriate requirements for facile processing in solution, leading to the design of monoliths with hierarchical porosity, significant pore volume, and high specific surface area after pyrolysis. Polymers with high boron contents are more appropriate for the preparation of dense ceramics through direct solid shaping and pyrolysis. We provide a comprehensive study of the thermal decomposition mechanisms, and a subsequent detailed study of the high-temperature behavior of the ceramics produced at 1000 °C. The nanostructure and microstructure of the final SiC-based ceramics are intimately linked to the boron content of the polymers. B4 C/C/SiC nanocomposites can be obtained from the polymer with the highest boron content.

11.
Chemistry ; 22(24): 8346-57, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27170549

RESUMO

A template-assisted polymer-derived ceramic route is investigated for preparing a series of silicoboron carbonitride (Si/B/C/N) foams with a hierarchical pore size distribution and tailorable interconnected porosity. A boron-modified polycarbosilazane was selected to impregnate monolithic silica and carbonaceous templates and form after pyrolysis and template removal Si/B/C/N foams. By changing the hard template nature and controlling the quantity of polymer to be impregnated, controlled micropore/macropore distributions with mesoscopic cell windows are generated. Specific surface areas from 29 to 239 m(2) g(-1) and porosities from 51 to 77 % are achieved. These foams combine a low density with a thermal insulation and a relatively good thermostructural stability. Their particular structure allowed the in situ growth of metal-organic frameworks (MOFs) directly within the open-cell structure. MOFs offered a microporosity feature to the resulting Si/B/C/N@MOF composite foams that allowed increasing the specific surface area to provide CO2 uptake of 2.2 %.

12.
Langmuir ; 32(16): 3880-9, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27031345

RESUMO

Taking advantage of the benefit of Pickering-based emulsions and sol-gel chemistry, we synthesized mineralized Pickering emulsion-based capsules constituted of a dodecane core and a siliceous shell. To trigger the oily core mechanical release, we first made use of the one-step polycondensation synthesis path, reaching limited shell thickness from 43 to 115 nm with a resistance against the application of an external pressure from 0.5 to 6 MPa. When addressing a sequential mineralization route, we were able to reach both better shell homogeneity and higher values of shell thickness from 85 to 135 nm associated with a shell breaking pressure varying from 1.2 to 10 MPa. In this last configuration, the shell homogeneity and thickness are acting cooperatively toward enhancing the shell mechanical toughness and the associated effective breaking pressure of the dodecane@SiO2 core-shell particles.

13.
J Mater Chem B ; 4(13): 2290-2303, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32263224

RESUMO

For the first time the study at various length scales of E. coli proliferation modes within Si(HIPE) inorganic macrocellular foams is proposed. Both qualitatively and semi-quantitatively, bacterial proliferation within the foam is not homogeneous and is directly linked to the random distribution of Si(HIPE) macroscopic cells. When inoculated in a nutrient loaded Si(HIPE), the bacterial growth is enhanced within the Si(HIPE) matrices compared to the surrounding LB media. The bacterial growth kinetics tends to be faster and the concentration at saturation is roughly 100% times higher. In the case of a Si(HIPE) host free of nutrients, bacterial motion occurs as an infiltration wave; the peak of this propagation wave moves at a constant speed of 88 µm h-1, while bacterial concentrations within the Si(HIPE) host reach levels far above the ones reached in the presence of nutrients, suggesting a real synergetic relationship between the bacterial colony guests and the Si(HIPE) host. When a nutrient reservoir is present at the opposite position from which bacteria were inoculated, bacterial proliferation is associated with a coalescence process between the growing colonies that were rapidly established within the first hours. When the Si(HIPE) host was fully colonized we found out a specific distance between adjacent colonies of 5 and 15 µm in good correspondence with the repartition of the wall to wall distances of the Si(HIPE) macroscopic cells, meaning that bacterial repartition once colonization occurs is optimum. These results show that Si(HIPE) foams are outstanding candidates for strengthened bacterial proliferation without motion restriction imposed by conventional silica gels.

14.
Chem Commun (Camb) ; 51(74): 14018-21, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26266884

RESUMO

A new type of acidic macrocellular and mesoporous silica-alumina foam is obtained via a one pot alkaline sol-gel route coupled with a concentrated emulsion-based templating technique. The mixed oxide monolith exhibits high surface acidity, translating into excellent performance in the acid-catalyzed dehydration of bioethanol to ethene.

15.
ACS Appl Mater Interfaces ; 6(14): 11211-8, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24949652

RESUMO

In a context of volatile organic compound photodecomposition, we have addressed TiO2-based macroscoscpic fiber generation. We have extruded hybrid sols of amorphous titania nanoparticles, latex nanoparticles, and nonionic surfactant (Tergitol) as structure-directing agents into a poly(vinyl alcohol) (PVA) solution bearing salts acting as a flocculating medium. The resulting nanocomposite TiO2/latex/PVA macroscopic fibers were thermally treated in air to open porosity by organic removal while generating the photocatalytically active anatase phase of TiO2 along with residual brookite. Considering the synthetic paths, we have varied both the diameter of the latex particles as well as their concentration within the starting sol. These parameters allow tuning both the voids created through the applied thermal treatment and the fiber final diameters. For gas-phase photocatalysis, we have shown that the fiber diameters, mesoscopic roughness, and macroscopic topological defects represent indeed important morphological parameters acting cooperatively toward both acetone degradation and its mineralization processes. Particularly, triggering the fiber morphological characteristics, we have increased their efficiency toward acetone degradation of around 550% when compared with previous work.

16.
Phys Chem Chem Phys ; 15(17): 6437-45, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23525249

RESUMO

Here we report the first membrane-free biofuel cell obtained using three-dimensional carbonaceous foam electrodes. We first developed a new synthetic pathway to produce a new carbonaceous foam electrode material bearing porosity both on the meso and macroporous scales. We proved that by increasing the porosity of our three-dimensional foams we could increase the current density of our modified electrodes. Then, by choosing the right combination of enzyme and mediator, and the right loading of active components, we achieved high current densities for an anodic system. Finally, we combined the improved cathode and anode to build a new membrane-free hybrid enzymatic biofuel cell consisting of a mediated anode and a mediator-free cathode.


Assuntos
Fontes de Energia Bioelétrica , Carbono/química , Aspergillus niger/enzimologia , Basidiomycota/enzimologia , Carbono/metabolismo , Eletrodos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Substâncias Macromoleculares/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Porosidade , Propriedades de Superfície
17.
Langmuir ; 27(8): 4334-8, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21446667

RESUMO

In this work, we report the elaboration of macroscopic hybrid virus-silica fibers. By using a silicate sol as inorganic precursor combined with the filamentous fd virus, well-dispersed hybrid fibers are obtained in solution. These macroscopic fd-silica fibers exhibit a narrow distribution of their diameter, while their length is at the millimeter scale. A scenario of the morphosynthesis is proposed to account for the formation of these high aspect ratio hybrid fibers.


Assuntos
Dióxido de Silício/química , Vírus/química , Géis , Substâncias Macromoleculares/química
18.
Chem Soc Rev ; 40(2): 771-88, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21088777

RESUMO

Highly internal phase emulsion (polyHIPE) materials are promising macrocellular foams bearing versatile applications ranging from catalysis, optics, filtration, insulator and so forth. In this critical review water-in-oil HIPE, oil-in-water HIPE and Pickering-based HIPE are discussed. Also in each above-mentioned HIPE family, declination between the organic, inorganic or hybrid-organic foams chemical nature is proposed. The polyHIPE audience is thereby strongly interdisciplinary in nature crossing boundaries of physical chemistry, colloids, polymer science, sol-gel chemistry, hybrid materials, biology and beyond (114 references).

19.
Langmuir ; 26(3): 1734-42, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20099917

RESUMO

We propose a new synthesis pathway without any sacrificial template to prepare original monodisperse thermoresponsive capsules made of a wax core surrounded by a silica shell. Under heating, the inner wax expands and the shell breaks, leading to the liquid oil release. Such capsules that allow triggered deliverance provoked by an external stimulus belong to the class of smart materials. The process is based on the elaboration of size-controlled emulsions stabilized by particles (Pickering emulsions) exploiting the limited coalescence phenomenon. Then the emulsions are cooled down and the obtained suspensions are mineralized by the hydrolysis and condensation of a monomer at the wax-water interface, leading to the formation of capsules. The shell break and the liquid oil release are provoked by heating above the wax melting temperature. We characterize the obtained materials and examine the effect of processing parameters and heating history. By an appropriate choice of the wax, the temperature of release can easily be tuned.

20.
Langmuir ; 25(14): 7847-56, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19594176

RESUMO

The drainage of SiO(2) nanoparticle-cationic surfactant (TTAB) mixtures through calibrated aqueous foams had been studied by combining several approaches on both the macroscopic and the local scale. Macroscopic measurements reveal a strong stabilizing effect arising for nanoparticle concentrations as low as 2 wt % mainly because of a drainage kinetic slow-down dependent on the nanoparticle concentration. We show that the variation of the viscous parameters (bulk viscosity, interfacial viscosity, or both) in the classical theoretical models of foam drainage, mainly developed for aqueous surfactant solutions, does not enable fitting experimental data obtained via steady- or free-drainage strategies for [SiO(2)] > or = 2 wt %. In contrast, the quantitative analysis of the data obtained from front propagation velocities has revealed a drainage regime transition from a node-dominated regime toward a Plateau-border-dominated regime upon nanoparticle concentration increase. Observations performed at the Plateau border scale brought to light the drainage kinetic slow-down process by evidencing that the presence of insoluble aggregates induces traffic jamming and even cork formation for silica concentrations above 2 wt %. Considering these observations, a simple mechanism of aggregate growth and cork formation is proposed. Finally, we analyze the discrepancy between experiments (steady- and free-drainage methods) and theory by pointing out that the hypothesis relative to the foam structure that is usually assumed for both the liquid fraction calculation and the determination via conductivity measurements is strongly modified when large insoluble aggregates are present in the system. In this view, the method based on the liquid fraction determination through the measurement of the front propagation velocity seems to be the most suitable for studying the drainage of colloidal dispersion because of the lower dependence of this approach toward hypothesis on the local geometry of the foam continuous phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...