Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(17): 4546-4559, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38636165

RESUMO

Surfaces, both water/air and solid/water, play an important role in mediating a multitude of processes central to atmospheric chemistry, particularly in the aerosol phase. However, the study of both static and dynamic properties of surfaces is highly challenging from an experimental standpoint, leading to a lack of molecular level information about the processes that take place at these systems and how they differ from bulk. One of the few techniques that has been able to capture ultrafast surface phenomena is time-resolved sum-frequency generation (SFG) spectroscopy. Since it is both surface-specific and chemically sensitive, the extension of this spectroscopic technique to the time domain makes it possible to study dynamic processes on the femtosecond time scale. In this Perspective, we will explore recent advances made in the field both in terms of studying energy dissipation as well as chemical reactions and the role the surface geometry plays in these processes.

5.
Adv Mater ; 36(12): e2210050, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36651201

RESUMO

Several metal-organic frameworks (MOFs) excel in harvesting water from the air or as heat pumps as they show a steep increase in water uptake at 10-30 % relative humidity (RH%). A precise understanding of which structural characteristics govern such behavior is lacking. Herein, CAU-10-H and CAU-10-CH3 are studied with H, CH3 corresponding to the functions grafted to the organic linker. CAU-10-H shows a steep water uptake ≈18 RH% of interest for water harvesting, yet the subtle replacement of H by CH3 in the organic linker drastically changes the water adsorption behavior to less steep water uptake at much higher humidity values. The materials' structural deformation and water ordering during adsorption with in situ sum-frequency generation, in situ X-ray diffraction, and molecular simulations are unraveled. In CAU-10-H, an energetically favorable water cluster is formed in the hydrophobic pore, tethered via H-bonds to the framework µï£¿OH groups, while for CAU-10-CH3, such a favorable cluster cannot form. By relating the findings to the features of water adsorption isotherms of a series of MOFs, it is concluded that favorable water adsorption occurs when sites of intermediate hydrophilicity are present in a hydrophobic structure, and the formation of energetically favorable water clusters is possible.

6.
Angew Chem Int Ed Engl ; 63(8): e202312123, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38010868

RESUMO

A critical step in photocatalytic water dissociation is the hole-mediated oxidation reaction. Molecular-level insights into the mechanism of this complex reaction under realistic conditions with high temporal resolution are highly desirable. Here, we use femtosecond time-resolved, surface-specific vibrational sum frequency generation spectroscopy to study the photo-induced reaction directly at the interface of the photocatalyst TiO2 in contact with liquid water at room temperature. Thanks to the inherent surface specificity of the spectroscopic method, we can follow the reaction of solely the interfacial water molecules directly at the interface at timescales on which the reaction takes place. Following the generation of holes at the surface immediately after photoexcitation of the catalyst with UV light, water dissociation occurs on a sub-20 ps timescale. The reaction mechanism is similar at pH 3 and 11. In both cases, we observe the conversion of H2 O into Ti-OH groups and the deprotonation of pre-existing Ti-OH groups. This study provides unique experimental insights into the early steps of the photo-induced dissociation processes at the photocatalyst-water interface, relevant to the design of improved photocatalysts.

7.
Faraday Discuss ; 249(0): 317-333, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-37795538

RESUMO

Studying lipid monolayers as model biological membranes, we demonstrate that water molecules interfacing with different model membranes can display preferential orientation for two distinct reasons: due to charges on the membrane, and due to large dipole fields resulting from zwitterionic headgroups. This preferential water orientation caused by the charge or the dipolar field can be effectively neutralized to net-zero water orientation by introducing monolayer counter-charges (i.e. lipids with oppositely charged headgroups). Following the Gouy-Chapman model, the effect of monolayer surface charge on water orientation is furthermore strongly dependent on the electrolyte concentration and thus on the counterions in solution. In contrast, the effect of ions in the subphase on the dipolar alignment of water is zero. As a result, the capability of monolayer counter-charges to null the effect of dipolar orientation is strongly electrolyte-dependent. Notably, the different effects are additive for mixed charged/zwitterionic lipid systems occurring in nature. Specifically, for an E. coli lipid membrane extract consisting of both zwitterionic and negatively charged lipids, the water orientation can be explained by the sum of the constituents. Our results can be quantitatively reproduced using Gouy-Chapman theory, revealing the relatively straightforward electrostatic effects on the hydration of complex membrane interfaces.


Assuntos
Escherichia coli , Água , Membrana Celular , Eletrólitos , Lipídeos
8.
Phys Chem Chem Phys ; 25(45): 31471-31480, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37962476

RESUMO

The direct conversion of solar energy to hydrogen is considered as a possible method to produce carbon neutral hydrogen fuel. The mechanism of photocatalytic water splitting involves the chemical breakdown of water and re-assembly into hydrogen and oxygen at the interface of a photocatalyst. The selection rules of a suitable material are well established, but the fundamental understanding of the mechanisms, occurring at the interface between the catalyst and the water, remains missing. Using surface specific sum frequency generation spectroscopy, we present here characterisation of the interface between water and the photocatalyst strontium titanate (SrTiO3). We monitor the OH-stretching vibrations present at the interface. Their variations of intensities and frequencies as functions of isotopic dilution, pH and salt concentration provide information about the nature of the hydrogen bonding environment. We observe the presence of water molecules that flip their orientation at pH 5 indicating the point of zero charge of the SrTiO3 layer. These water molecules are oriented with their hydrogen away from the surface when the pH of the solutions is below 5 and pointing towards the surface when the pH is higher than 5. Besides, water molecules donating a H-bond to probably surface TiOH groups are observed at all pH.

9.
Int J Biol Macromol ; 244: 125398, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37330085

RESUMO

Dragline silk of Trichonephila spiders has attracted attention in various applications. One of the most fascinating uses of dragline silk is in nerve regeneration as a luminal filling for nerve guidance conduits. In fact, conduits filled with spider silk can measure up to autologous nerve transplantation, but the reasons behind the success of silk fibers are not yet understood. In this study dragline fibers of Trichonephila edulis were sterilized with ethanol, UV radiation, and autoclaving and the resulting material properties were characterized with regard to the silk's suitability for nerve regeneration. Rat Schwann cells (rSCs) were seeded on these silks in vitro and their migration and proliferation were investigated as an indication for the fiber's ability to support the growth of nerves. It was found that rSCs migrate faster on ethanol treated fibers. To elucidate the reasons behind this behavior, the fiber's morphology, surface chemistry, secondary protein structure, crystallinity, and mechanical properties were studied. The results demonstrate that the synergy of dragline silk's stiffness and its composition has a crucial effect on the migration of rSCs. These findings pave the way towards understanding the response of SCs to silk fibers as well as the targeted production of synthetic alternatives for regenerative medicine applications.


Assuntos
Fibroínas , Tecido Nervoso , Aranhas , Animais , Ratos , Seda/química , Regeneração Nervosa , Medicina Regenerativa , Fibroínas/química
10.
J Am Chem Soc ; 144(43): 19726-19738, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36273333

RESUMO

Understanding the collective behavior of ions at charged surfaces is of paramount importance for geological and electrochemical processes. Ions screen the surface charge, and interfacial fields break the centro-symmetry near the surface, which can be probed using second-order nonlinear spectroscopies. The effect of electrolyte concentration on the nonlinear optical response has been semi-quantitatively explained by mean-field models based on the Poisson-Boltzmann equation. Yet, to explain previously reported ion-specific effects on the spectroscopic response, drastic ion-specific changes in the interfacial properties, including surface acidities and dielectric permittivities, or strong ion adsorption/desorption had to be invoked. Here, we use sum-frequency generation (SFG) spectroscopy to probe the symmetry-breaking of water molecules at a charged silica surface in contact with alkaline metal chloride solutions (LiCl, NaCl, KCl, and CsCl) at various concentrations. We find that the water response varies with the cation: the SFG response is markedly enhanced for LiCl compared to CsCl. We show that within mean-field models, neither specific ion-surface interactions nor a reduced dielectric constant of water near the interface can account for the variation of spectral intensities with cation nature. Molecular dynamics simulations confirm that the decay of the electrochemical potential only weakly depends on the salt type. Instead, the effect of different salts on the optical response is indirect, through the reorganization of the interfacial water: the salt-type-dependent alignment of water directly at the interface can explain the observations.


Assuntos
Dióxido de Silício , Água , Cátions , Cloretos , Cloreto de Sódio
11.
Angew Chem Int Ed Engl ; 61(46): e202207017, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36006393

RESUMO

The dissolution of minerals in contact with water plays a crucial role in geochemistry. However, obtaining molecular insight into interfacial chemistry is challenging. Dissolution typically involves the release of ions from the surface, giving rise to a charged mineral surface. This charge affects the interfacial water arrangement, which can be investigated by surface-specific vibrational Sum Frequency Generation (v-SFG) spectroscopy. For the fluorite-water interface, recent spectroscopic studies concluded that fluoride adsorption/desorption determines the surface charge, which contrasts zeta potential measurements assigning this role to the calcium ion. By combining v-SFG spectroscopy and flow experiments with systematically suppressed dissolution, we uncover the interplay of dominant fluoride and weak calcium adsorption/desorption, resolving the controversy in the literature. We infer the calcium contribution to be orders of magnitude smaller, emphasizing the sensitivity of our approach.

12.
Chem Sci ; 13(17): 5014-5026, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35655890

RESUMO

The freezing of water into ice is a key process that is still not fully understood. It generally requires an impurity of some description to initiate the heterogeneous nucleation of the ice crystals. The molecular structure, as well as the extent of structural order within the impurity in question, both play an essential role in determining its effectiveness. However, disentangling these two contributions is a challenge for both experiments and simulations. In this work, we have systematically investigated the ice-nucleating ability of the very same compound, cholesterol, from the crystalline (and thus ordered) form to disordered self-assembled monolayers. Leveraging a combination of experiments and simulations, we identify a "sweet spot" in terms of the surface coverage of the monolayers, whereby cholesterol maximises its ability to nucleate ice (which remains inferior to that of crystalline cholesterol) by enhancing the structural order of the interfacial water molecules. These findings have practical implications for the rational design of synthetic ice-nucleating agents.

13.
Phys Chem Chem Phys ; 24(22): 13510-13513, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35640627

RESUMO

Understanding the acid/base behavior of environmentally relevant organic acids is of key relevance for accurate climate modelling. Here we investigate the effect of pH on the (de)protonation state of pyruvic acid at the air-water interface and in bulk by using the analytical techniques surface-specific vibrational sum frequency generation and attenuated total reflection spectroscopy. To provide a molecular interpretation of the observed behavior, simulations are carried out using a free energy perturbation approach in combination with electronic structure-based molecular dynamics. In both the experimental and theoretical results we observe that the protonated form of pyruvic acid is preferred at the air-water interface. The increased proton affinity is the result of the specific microsolvation at the interface.


Assuntos
Ar , Água , Ar/análise , Simulação de Dinâmica Molecular , Ácido Pirúvico , Análise Espectral , Água/química
14.
Macromol Rapid Commun ; 43(12): e2100733, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35338785

RESUMO

Drops sliding down an adaptive surface lead to changes of the dynamic contact angles. Two adaptation processes play a role: 1) the adaptation of the surface upon bringing it into contact to the drop (wetting) and 2) the adaptation of the surface after the drop passed (dewetting). In order to study both processes, the authors investigate samples made from random styrene (PS)/acrylic acid (PAA) copolymers, which are exposed to water. Sum-frequency generation spectroscopy and tilted-plate measurements indicate that during wetting, the PS segments displace from the interface, while PAA segments are enriched. This structural adaptation of the PS/PAA random copolymer to water remains after dewetting. Annealing the adapted polymer induces reorientation of the PS segments to the surface.


Assuntos
Acrilatos , Água , Acrilatos/química , Polímeros/química , Molhabilidade
15.
Langmuir ; 38(8): 2538-2549, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171621

RESUMO

This work reports the feasibility of polybutadiene (PB) cross-linking under UV irradiation in the presence of a linear polymer, cellulose acetate (CA), to form semi-interpenetrating polymer networks at the air-water interface. The thermodynamic properties and the morphology of two-dimensional (2D) CA/PB blends are investigated after UV irradiation and for a wide range of CA volume fractions. A contraction of the mixed Langmuir films is observed independent of the composition, in agreement with that recorded for the individual PB monolayer after cross-linking. The PB network formation is demonstrated by in situ sum-frequency generation spectroscopy on the equivolumic CA/PB mixed film. From Brewster angle microscopy observations, the PB network synthesis does not induce any morphology change at the mesoscopic scale, and all of the mixed films remain homogeneous laterally. In situ neutron reflectometry is used to probe the effect of PB cross-linking on the vertical structure of CA/PB mixed films. For all studied compositions, significant thickening of the films is evidenced, consistent with their contraction ratio. This thickening is accompanied by a partial expulsion of the PB toward the film-air interface, which is attributed to the hydrophobic character of the PB. This phenomenon is stronger for films rich in PB. In particular, the structure of the PB-rich film undergoes a transition from vertically homogeneous to inhomogeneous along the depth. 2D semi-interpenetrating polymer networks can thus be synthesized at the air-water interface with a morphology that is strongly influenced by the polymer-polymer and polymer-environment interactions.

16.
J Phys Chem A ; 126(6): 951-956, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35113564

RESUMO

Sum-frequency generation (SFG) vibrational spectroscopy is a powerful technique to study interfaces at the molecular level. Phase-resolved SFG (PR-SFG) spectroscopy provides direct information on interfacial molecules' orientation. However, its implementation is technologically demanding: it requires the generation of a local oscillator wave and control of its time delay with sub-fs accuracy. Commonly used noncollinear PR-SFG provides this control naturally but requires very accurate sample height control. Collinear PR-SFG spectroscopy is less demanding regarding sample positioning, but tuning the local oscillator time delay with this beam geometry is challenging. Here, we develop a collinear PR-SFG setup using a displaced Sagnac interferometer. This scheme allows full, independent control of the time delay and intensity of the local oscillator and provides long-time phase stabilization (better than 5° over 12 h) for the measured signal. This approach substantially reduces the complexity of an experimental setup and combines the advantages of collinear and noncollinear PR-SFG techniques.

17.
J Am Chem Soc ; 144(6): 2546-2555, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35129329

RESUMO

The development of systems capable of responding to environmental changes, such as humidity, requires the design and assembly of highly sensitive and efficiently transducing elements. Such a challenge can be mastered only by disentangling the role played by each component of the responsive system, thus ultimately achieving high performance by optimizing the synergistic contribution of all functional elements. Here, we designed and synthesized a novel [1]benzothieno[3,2-b][1]benzothiophene derivative equipped with hydrophilic oligoethylene glycol lateral chains (OEG-BTBT) that can electrically transduce subtle changes in ambient humidity with high current ratios (>104) at low voltages (2 V), reaching state-of-the-art performance. Multiscale structural, spectroscopical, and electrical characterizations were employed to elucidate the role of each device constituent, viz., the active material's BTBT core and OEG side chains, and the device interfaces. While the BTBT molecular core promotes the self-assembly of (semi)conducting crystalline films, its OEG side chains are prone to adsorb ambient moisture. These chains act as hotspots for hydrogen bonding with atmospheric water molecules that locally dissociate when a bias voltage is applied, resulting in a mixed electronic/protonic long-range conduction throughout the film. Due to the OEG-BTBT molecules' orientation with respect to the surface and structural defects within the film, water molecules can access the humidity-sensitive sites of the SiO2 substrate surface, whose hydrophilicity can be tuned for an improved device response. The synergistic chemical engineering of materials and interfaces is thus key for designing highly sensitive humidity-responsive electrical devices whose mechanism relies on the interplay of electron and proton transport.

18.
Nano Lett ; 22(2): 578-585, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34904831

RESUMO

The actuation of micro- and nanostructures controlled by external stimuli remains one of the exciting challenges in nanotechnology due to the wealth of fundamental questions and potential applications in energy harvesting, robotics, sensing, biomedicine, and tunable metamaterials. Photoactuation utilizes the conversion of light into motion through reversible chemical and physical processes and enables remote and spatiotemporal control of the actuation. Here, we report a fast light-to-motion conversion in few-nanometer thick bare polydopamine (PDA) membranes stimulated by visible light. Light-induced heating of PDA leads to desorption of water molecules and contraction of membranes in less than 140 µs. Switching off the light leads to a spontaneous expansion in less than 20 ms due to heat dissipation and water adsorption. Our findings demonstrate that pristine PDA membranes are multiresponsive materials that can be harnessed as robust building blocks for soft, micro-, and nanoscale actuators stimulated by light, temperature, and moisture level.


Assuntos
Nanoestruturas , Polímeros , Indóis , Nanotecnologia , Polímeros/química
20.
J Phys Chem B ; 125(37): 10639-10646, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34503330

RESUMO

The evaporation of molecules from water-organic solute binary mixtures is key for both atmospheric and industrial processes such as aerosol formation and distillation. Deviations from ideal evaporation energetics can be assigned to intermolecular interactions in solution, yet evaporation occurs from the interface, and the poorly understood interfacial, rather than the bulk, structure of binary mixtures affects evaporation kinetics. Here we determine the interfacial structure of nonideal binary mixtures of water with methanol, ethanol, and formic acid, by combining surface-specific vibrational spectroscopy with molecular dynamics simulations. We find that the free, dangling OH groups at the interfaces of these differently behaving nonideal mixtures are essentially indistinguishable. In contrast, the ordering of hydrogen-bonded interfacial water molecules differs substantially at these three interfaces. Specifically, the interfacial water molecules become more disordered (ordered) in mixtures with methanol and ethanol (formic acid), showing higher (lower) vapor pressure than that predicted by Raoult's law.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...