Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Commun ; 15(1): 2935, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580633

RESUMO

Histopathology plays a critical role in the diagnosis and surgical management of cancer. However, access to histopathology services, especially frozen section pathology during surgery, is limited in resource-constrained settings because preparing slides from resected tissue is time-consuming, labor-intensive, and requires expensive infrastructure. Here, we report a deep-learning-enabled microscope, named DeepDOF-SE, to rapidly scan intact tissue at cellular resolution without the need for physical sectioning. Three key features jointly make DeepDOF-SE practical. First, tissue specimens are stained directly with inexpensive vital fluorescent dyes and optically sectioned with ultra-violet excitation that localizes fluorescent emission to a thin surface layer. Second, a deep-learning algorithm extends the depth-of-field, allowing rapid acquisition of in-focus images from large areas of tissue even when the tissue surface is highly irregular. Finally, a semi-supervised generative adversarial network virtually stains DeepDOF-SE fluorescence images with hematoxylin-and-eosin appearance, facilitating image interpretation by pathologists without significant additional training. We developed the DeepDOF-SE platform using a data-driven approach and validated its performance by imaging surgical resections of suspected oral tumors. Our results show that DeepDOF-SE provides histological information of diagnostic importance, offering a rapid and affordable slide-free histology platform for intraoperative tumor margin assessment and in low-resource settings.


Assuntos
Aprendizado Profundo , Microscopia , Corantes Fluorescentes , Hematoxilina , Amarelo de Eosina-(YS)
2.
J Biomed Opt ; 28(1): 016002, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36654656

RESUMO

Significance: Despite recent advances in multimodal optical imaging, oral imaging systems often do not provide real-time actionable guidance to the clinician who is making biopsy and treatment decisions. Aim: We demonstrate a low-cost, portable active biopsy guidance system (ABGS) that uses multimodal optical imaging with deep learning to directly project cancer risk and biopsy guidance maps onto oral mucosa in real time. Approach: Cancer risk maps are generated based on widefield autofluorescence images and projected onto the at-risk tissue using a digital light projector. Microendoscopy images are obtained from at-risk areas, and multimodal image data are used to calculate a biopsy guidance map, which is projected onto tissue. Results: Representative patient examples highlight clinically actionable visualizations provided in real time during an imaging procedure. Results show multimodal imaging with cancer risk and biopsy guidance map projection offers a versatile, quantitative, and precise tool to guide biopsy site selection and improve early detection of oral cancers. Conclusions: The ABGS provides direct visible guidance to identify early lesions and locate appropriate sites to biopsy within those lesions. This represents an opportunity to translate multimodal imaging into real-time clinically actionable visualizations to help improve patient outcomes.


Assuntos
Neoplasias Bucais , Imagem Óptica , Humanos , Imagem Óptica/métodos , Detecção Precoce de Câncer/métodos , Neoplasias Bucais/diagnóstico , Biópsia , Mucosa Bucal/patologia
3.
Proc Natl Acad Sci U S A ; 117(52): 33051-33060, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318169

RESUMO

Microscopic evaluation of resected tissue plays a central role in the surgical management of cancer. Because optical microscopes have a limited depth-of-field (DOF), resected tissue is either frozen or preserved with chemical fixatives, sliced into thin sections placed on microscope slides, stained, and imaged to determine whether surgical margins are free of tumor cells-a costly and time- and labor-intensive procedure. Here, we introduce a deep-learning extended DOF (DeepDOF) microscope to quickly image large areas of freshly resected tissue to provide histologic-quality images of surgical margins without physical sectioning. The DeepDOF microscope consists of a conventional fluorescence microscope with the simple addition of an inexpensive (less than $10) phase mask inserted in the pupil plane to encode the light field and enhance the depth-invariance of the point-spread function. When used with a jointly optimized image-reconstruction algorithm, diffraction-limited optical performance to resolve subcellular features can be maintained while significantly extending the DOF (200 µm). Data from resected oral surgical specimens show that the DeepDOF microscope can consistently visualize nuclear morphology and other important diagnostic features across highly irregular resected tissue surfaces without serial refocusing. With the capability to quickly scan intact samples with subcellular detail, the DeepDOF microscope can improve tissue sampling during intraoperative tumor-margin assessment, while offering an affordable tool to provide histological information from resected tissue specimens in resource-limited settings.


Assuntos
Carcinoma/patologia , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Bucais/patologia , Algoritmos , Animais , Biópsia/instrumentação , Biópsia/métodos , Biópsia/normas , Calibragem , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/normas , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/normas , Suínos
4.
Head Neck ; 42(2): 171-179, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31621979

RESUMO

BACKGROUND: Multimodal optical imaging, incorporating reflectance and fluorescence modalities, is a promising tool to detect oral premalignant lesions in real-time. METHODS: Images were acquired from 171 sites in 66 patient visits for clinical evaluation of oral lesions. An automated algorithm was used to classify lesions as high- or low-risk for neoplasia. Biopsies were acquired at clinically indicated sites and those classified as high-risk by imaging, at the surgeon's discretion. RESULTS: Twenty sites were biopsied based on clinical examination or imaging. Of these, 12 were indicated clinically and by imaging; 58% were moderate dysplasia or worse. Four biopsies were indicated by imaging evaluation only; 75% were moderate dysplasia or worse. Finally, four biopsies were indicated by clinical evaluation only; 75% were moderate dysplasia or worse. CONCLUSION: Multimodal imaging identified more cases of high-grade dysplasia than clinical evaluation, and can improve detection of high grade precancer in patients with oral lesions.


Assuntos
Lesões Pré-Cancerosas , Biópsia , Humanos , Imagem Multimodal , Projetos Piloto , Lesões Pré-Cancerosas/diagnóstico por imagem , Estudos Prospectivos
5.
Cancer Prev Res (Phila) ; 12(11): 791-800, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451520

RESUMO

Patients with oral potentially malignant disorders (OPMD) must undergo regular clinical surveillance to ensure that any progression to malignancy is detected promptly. Autofluorescence imaging (AFI) is an optical modality that can assist clinicians in detecting early cancers and high-grade dysplasia. Patients with OPMD undergoing surveillance for the development of oral cancer were examined using AFI at successive clinic visits. Autofluorescence images acquired at 133 clinical visits from sites in 15 patients who met inclusion criteria were analyzed quantitatively using an algorithm to calculate the red-to-green pixel intensity (RG ratio). A quantitative AFI threshold for high risk of progression was defined based on the RG ratio and was compared with expert clinical impression and with histopathology when available. Patients were divided into two groups based on their endpoint: surveillance (n = 6) or surgery (n = 9). In the surveillance group, 0 of 6 (0%) of patients were clinically identified as high risk for progression prior to the study endpoint, whereas 1 of 6 (17%) of patients were deemed at high risk for progression based on AFI during the same time period. In the surgery group, 9 of 9 (100%) of patients were clinically identified as high risk prior to the study endpoint, whereas 8 of 9 (89%) of patients were at high risk for progression based on AFI during the same time period. AFI results tracked over time were comparable with expert clinical impression in these patient groups. AFI has the potential to aid clinicians in noninvasively monitoring oral precancer and evaluating OPMDs that require increased surveillance.


Assuntos
Detecção Precoce de Câncer/métodos , Hiperplasia/patologia , Neoplasias Bucais/patologia , Imagem Óptica/métodos , Lesões Pré-Cancerosas/patologia , Progressão da Doença , Humanos , Estudos Longitudinais , Prognóstico , Estudos Retrospectivos
6.
J Biomed Opt ; 24(2): 1-10, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30793567

RESUMO

Oral premalignant lesions (OPLs), such as leukoplakia, are at risk of malignant transformation to oral cancer. Clinicians can elect to biopsy OPLs and assess them for dysplasia, a marker of increased risk. However, it is challenging to decide which OPLs need a biopsy and to select a biopsy site. We developed a multimodal optical imaging system (MMIS) that fully integrates the acquisition, display, and analysis of macroscopic white-light (WL), autofluorescence (AF), and high-resolution microendoscopy (HRME) images to noninvasively evaluate OPLs. WL and AF images identify suspicious regions with high sensitivity, which are explored at higher resolution with the HRME to improve specificity. Key features include a heat map that delineates suspicious regions according to AF images, and real-time image analysis algorithms that predict pathologic diagnosis at imaged sites. Representative examples from ongoing studies of the MMIS demonstrate its ability to identify high-grade dysplasia in OPLs that are not clinically suspicious, and to avoid unnecessary biopsies of benign OPLs that are clinically suspicious. The MMIS successfully integrates optical imaging approaches (WL, AF, and HRME) at multiple scales for the noninvasive evaluation of OPLs.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neoplasias Bucais/diagnóstico por imagem , Imagem Multimodal/métodos , Imagem Óptica/métodos , Lesões Pré-Cancerosas/diagnóstico por imagem , Algoritmos , Biópsia , Transformação Celular Neoplásica , Endoscopia , Humanos , Microscopia de Fluorescência/métodos , Doenças da Boca/diagnóstico por imagem , Neoplasias Bucais/patologia , Neoplasias Bucais/cirurgia , Reconhecimento Automatizado de Padrão , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Software
7.
Cancer Prev Res (Phila) ; 11(8): 465-476, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29903741

RESUMO

Early detection of oral cancer and oral premalignant lesions (OPL) containing dysplasia could improve oral cancer outcomes. However, general dental practitioners have difficulty distinguishing dysplastic OPLs from confounder oral mucosal lesions in low-risk populations. We evaluated the ability of two optical imaging technologies, autofluorescence imaging (AFI) and high-resolution microendoscopy (HRME), to diagnose moderate dysplasia or worse (ModDys+) in 56 oral mucosal lesions in a low-risk patient population, using histopathology as the gold standard, and in 46 clinically normal sites. AFI correctly diagnosed 91% of ModDys+ lesions, 89% of clinically normal sites, and 33% of benign lesions. Benign lesions with severe inflammation were less likely to be correctly diagnosed by AFI (13%) than those without (42%). Multimodal imaging (AFI+HRME) had higher accuracy than either modality alone; 91% of ModDys+ lesions, 93% of clinically normal sites, and 64% of benign lesions were correctly diagnosed. Photos of the 56 lesions were evaluated by 28 dentists of varied training levels, including 26 dental residents. We compared the area under the receiver operator curve (AUC) of clinical impression alone to clinical impression plus AFI and clinical impression plus multimodal imaging using k-Nearest Neighbors models. The mean AUC of the dental residents was 0.71 (range: 0.45-0.86). The addition of AFI alone to clinical impression slightly lowered the mean AUC (0.68; range: 0.40-0.82), whereas the addition of multimodal imaging to clinical impression increased the mean AUC (0.79; range: 0.61-0.90). On the basis of these findings, multimodal imaging could improve the evaluation of oral mucosal lesions in community dental settings. Cancer Prev Res; 11(8); 465-76. ©2018 AACR.


Assuntos
Detecção Precoce de Câncer/métodos , Mucosa Bucal/diagnóstico por imagem , Neoplasias Bucais/prevenção & controle , Imagem Óptica/métodos , Lesões Pré-Cancerosas/diagnóstico por imagem , Adulto , Técnica de Moldagem Odontológica , Progressão da Doença , Endoscopia/instrumentação , Endoscopia/métodos , Estudos de Viabilidade , Humanos , Processamento de Imagem Assistida por Computador , Mucosa Bucal/patologia , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/patologia , Imagem Multimodal/instrumentação , Imagem Multimodal/métodos , Imagem Óptica/instrumentação , Lesões Pré-Cancerosas/patologia , Curva ROC , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA