Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 161(5)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109904

RESUMO

With the help of the one-dimensional random Potts-like model, we study the origins of fine structures observed on differential melting profiles of double-stranded DNA. We theoretically assess the effects of sequence arrangement on DNA melting curves through the comparison of results for random, correlated, and block sequences. Our results re-confirm the smearing out of the fine structure with the increase in chain length for all types of sequence arrangements and suggest that the fine structure is a finite-size effect. We have found that the fine structures on melting curves of chains comprised of blocks with correlations in sequence are more persistent, probably because of increased sequence disorder the blocks introduce. Many natural DNAs show a well-expressed fine structure of melting profiles. Our results for block sequences may suggest the existence of such sequence motifs in natural DNA sequences.


Assuntos
DNA , Desnaturação de Ácido Nucleico , DNA/química , Temperatura de Transição , Conformação de Ácido Nucleico
2.
Arch Biochem Biophys ; : 110132, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39181382

RESUMO

Differential Scanning Calorimetry (DSC) is a regular and powerful tool to measure the specific heat profile of various materials. Hydrogen bonds play a crucial role in stabilizing the three-dimensional structure of proteins. Naturally, information about the strength of hydrogen bonds is contained in the measured DSC profiles. Despite its obvious importance, there is no approach that would allow the extraction of such information from the heat capacity measurements. In order to connect the measured profile to microscopic properties of a polypeptide chain, a proper model is required to fit. Using recent advances in the Zimm-Bragg (ZB) theory of protein folding in water, we propose a new and efficient algorithm to process the DSC experimental data and to extract the H-bonding energy among other relevant constants. Thus, for the randomly picked set of 33 proteins, we have found a quite narrow distribution of hydrogen bonding energies from 1 to 8 kJ/mol with the average energy of intra-protein hydrogen bonds h¯=4.2±1.5 kJ/mol and the average energy of water-protein bonds as hps¯=3.8±1.5 kJ/mol. This is an important illustration of a tiny disbalance between the water-protein and intraprotein hydrogen bonds. Fitted values of the nucleation parameter σ belong to the range from 0.001 to 0.01, as expected. The reported method can be considered as complementary to the classical two-state approach and together with other parameters provides the protein-water and intraprotein H-bonding energies, not accessible within the two-state paradigm.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 1): 031915, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19905154

RESUMO

Motivated by measurements on stretched double-stranded DNA in the presence of multivalent cations, we develop a statistical mechanical model for the compaction of an insoluble semiflexible polymer under tension. Using a mean-field approach, we determine the order of the extended-to-compact transition and provide an interpretation for the magnitude and interval of tensions over which compaction takes place. In the simplest thermodynamic limit of an infinitely long homogeneous polymer, compaction is a first-order transition that occurs at a single value of tension. For finite length chains or for heterogeneous polymers, the transition progresses over an interval of tension. Our theory provides an interpretation for the result of single-molecule experiments in terms of microscopic parameters such as persistence length and free energy of condensation.


Assuntos
Cátions/farmacologia , DNA/química , Fenômenos Biomecânicos , Modelos Moleculares , Termodinâmica
4.
Biopolymers ; 75(5): 434-9, 2004 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-15468063

RESUMO

By taking into account base-base stacking interactions we improve the Generalized Model of Polypeptide Chain (GMPC). Based on a one-dimensional Potts-like model with many-particle interactions, the GMPC describes the helix-coil transition in both polypeptides and polynucleotides. In the framework of the GMPC we show that correctly introduced nearest-neighbor stacking interactions against the background of hydrogen bonding lead to increased stability (melting temperature) and, unexpectedly, to decreased cooperativity (maximal correlation length). The increase in stability is explained as due to an additional stabilizing interaction (stacking) and the surprising decrease in cooperativity is seen as a result of mixing of contributions of hydrogen bonding and stacking.


Assuntos
DNA/química , Ligação de Hidrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA