Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 20(9): 4443-4452, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37492942

RESUMO

The high blood level of low-density lipoprotein cholesterol (LDL-C) is a primary risk factor for cardiovascular disease. Plant sterols, known as phytosterols (PSs), can reduce LDL-C in a range of 8-14%. The extent of LDL-C reduction depends on its formulation. Encapsulation into liposomes is one formulation strategy to enhance the efficiency of PSs. PSs (campesterol, stigmasterol, and ß-sitosterol) have frequently been assessed alone or in combination for their LDL-C-lowering ability. However, one naturally abundant PS, brassicasterol, has not yet been tested for its efficacy. We have previously developed a novel liposomal formulation containing the PS mixture present naturally in canola that is composed of brassicasterol, campesterol, and ß-sitosterol. In this work, the efficacy of our novel liposomal PS formulation that includes brassicasterol was assessed in a hamster model. Animals were divided into five groups: (i) liposomal PS in orange juice, (ii) liposomal PS in water, (iii) marketed PS in orange juice, (iv) control orange juice, and (v) control water. The animals were fed a high-fat, cholesterol-supplemented (0.5%) diet to induce hypercholesterolemia. The treatment was administered orally once daily for 4 weeks. Fasting blood samples were collected at baseline, week 2, and week 4. The extent of the reduction of total cholesterol, LDL-C, high-density lipoprotein cholesterol (HDL-C), and triglycerides was compared among the groups. Liposomal PSs in both orange juice and water significantly reduced LDL-C compared to their controls. Furthermore, the liposomal PS was as effective as a marketed PS-containing product in reducing LDL-C. Liposomal PSs in both orange juice and water showed similar efficacy in LDL-C reduction, highlighting that these vehicles/food matrices do not affect the efficacy of PSs. The liposomal formulation of a natural PS mixture extracted from canola oil, with brassicasterol as a major component, exhibited a significant LDL-C reduction in a hamster model.


Assuntos
Hipercolesterolemia , Hiperlipidemias , Fitosteróis , Animais , LDL-Colesterol , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/etiologia , Lipossomos , Fitosteróis/farmacologia , Colesterol , Hipercolesterolemia/tratamento farmacológico , Dieta
2.
Sensors (Basel) ; 23(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37300027

RESUMO

The treatment of cancers is a significant challenge in the healthcare context today. Spreading circulating tumor cells (CTCs) throughout the body will eventually lead to cancer metastasis and produce new tumors near the healthy tissues. Therefore, separating these invading cells and extracting cues from them is extremely important for determining the rate of cancer progression inside the body and for the development of individualized treatments, especially at the beginning of the metastasis process. The continuous and fast separation of CTCs has recently been achieved using numerous separation techniques, some of which involve multiple high-level operational protocols. Although a simple blood test can detect the presence of CTCs in the blood circulation system, the detection is still restricted due to the scarcity and heterogeneity of CTCs. The development of more reliable and effective techniques is thus highly desired. The technology of microfluidic devices is promising among many other bio-chemical and bio-physical technologies. This paper reviews recent developments in the two types of microfluidic devices, which are based on the size and/or density of cells, for separating cancer cells. The goal of this review is to identify knowledge or technology gaps and to suggest future works.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Microfluídica , Técnicas Analíticas Microfluídicas/métodos , Separação Celular/métodos , Células Neoplásicas Circulantes/patologia , Linhagem Celular Tumoral , Dispositivos Lab-On-A-Chip
3.
Front Bioeng Biotechnol ; 11: 1161804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304145

RESUMO

Background: Engineering cardiac tissue that mimics the hierarchical structure of cardiac tissue remains challenging, raising the need for developing novel methods capable of creating structures with high complexity. Three-dimensional (3D)-printing techniques are among promising methods for engineering complex tissue constructs with high precision. By means of 3D printing, this study aims to develop cardiac constructs with a novel angular structure mimicking cardiac architecture from alginate (Alg) and gelatin (Gel) composite. The 3D-printing conditions were optimized and the structures were characterized in vitro, with human umbilical vein endothelial cells (HUVECs) and cardiomyocytes (H9c2 cells), for potential cardiac tissue engineering. Methods: We synthesized the composites of Alg and Gel with varying concentrations and examined their cytotoxicity with both H9c2 cells and HUVECs, as well as their printability for creating 3D structures of varying fibre orientations (angular design). The 3D-printed structures were characterized in terms of morphology by both scanning electron microscopy (SEM) and synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT), and elastic modulus, swelling percentage, and mass loss percentage as well. The cell viability studies were conducted via measuring the metabolic activity of the live cells with MTT assay and visualizing the cells with live/dead assay kit. Results: Among the examined composite groups of Alg and Gel, two combinations with ratios of 2 to 1 and 3 to 1 (termed as Alg2Gel1 and Alg3Gel1) showed the highest cell survival; they accordingly were used to fabricate two different structures: a novel angular and a conventional lattice structure. Scaffolds made of Alg3Gel1 showed higher elastic modulus, lower swelling percentage, less mass loss, and higher cell survival compared to that of Alg2Gel1. Although the viability of H9c2 cells and HUVECs on all scaffolds composed of Alg3Gel1 was above 99%, the group of the constructs with the angular design maintained significantly more viable cells compared to other investigated groups. Conclusion: The group of angular 3D-ptinted constructs has illustrated promising properties for cardiac tissue engineering by providing high cell viability for both endothelial and cardiac cells, high mechanical strength as well as appropriate swelling, and degradation properties during 21 days of incubation. Statement of Significance: 3D-printing is an emerging method to create complex constructs with high precision in a large scale. In this study, we have demonstrated that 3D-printing can be used to create compatible constructs from the composite of Alg and Gel with endothelial cells and cardiac cells. Also, we have demonstrated that these constructs are able to enhance the viability of cardiac and endothelial cells via creating a 3D structure mimicking the alignment and orientation of the fibers in the native heart.

4.
Pharmaceutics ; 15(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37376041

RESUMO

Luteolin (LUT) is a flavonoid found in several edible and medicinal plants. It is recognized for its biological activities such as antioxidant, anti-inflammatory, neuroprotective, and antitumor effects. However, the limited water solubility of LUT leads to poor absorption after oral administration. Nanoencapsulation may improve the solubility of LUT. Nanoemulsions (NE) were selected for the encapsulation of LUT due to their biodegradability, stability, and ability to control drug release. In this work, chitosan (Ch)-based NE was developed to encapsulate luteolin (NECh-LUT). A 23 factorial design was built to obtain a formulation with optimized amounts of oil, water, and surfactants. NECh-LUT showed a mean diameter of 67.5 nm, polydispersity index 0.174, zeta potential of +12.8 mV, and encapsulation efficiency of 85.49%. Transmission electron microscopy revealed spherical shape and rheological analysis verified the Newtonian behavior of NECh-LUT. SAXS technique confirmed the bimodal characteristic of NECh-LUT, while stability analysis confirmed NECh-LUT stability when stored at room temperature for up to 30 days. Finally, in vitro release studies showed LUT controlled release up to 72 h, indicating the promising potential of NECh-LUT to be used as novel therapeutic option to treat several disorders.

5.
Polymers (Basel) ; 15(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112073

RESUMO

This paper presents a comprehensive review of the literature for fabricating PDMS microfluidic devices by employing additive manufacturing (AM) processes. AM processes for PDMS microfluidic devices are first classified into (i) the direct printing approach and (ii) the indirect printing approach. The scope of the review covers both approaches, though the focus is on the printed mold approach, which is a kind of the so-called replica mold approach or soft lithography approach. This approach is, in essence, casting PDMS materials with the mold which is printed. The paper also includes our on-going effort on the printed mold approach. The main contribution of this paper is the identification of knowledge gaps and elaboration of future work toward closing the knowledge gaps in fabrication of PDMS microfluidic devices. The second contribution is the development of a novel classification of AM processes from design thinking. There is also a contribution in clarifying confusion in the literature regarding the soft lithography technique; this classification has provided a consistent ontology in the sub-field of the fabrication of microfluidic devices involving AM processes.

6.
Polymers (Basel) ; 15(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850290

RESUMO

Polydimethylsiloxane (PDMS) is a widely used material for soft lithography and microfabrication. PDMS exhibits some promising properties suitable for building microfluidic devices; however, bonding PDMS to PDMS and PDMS to other materials for multilayer structures in microfluidic devices is still challenging due to the hydrophobic nature of the surface of PDMS. This paper presents a simple yet effective method to increase the bonding strength for PDMS-to-PDMS using isopropyl alcohol (IPA). The experiment was carried out to evaluate the bonding strength for both the natural-cured and the heat-cured PDMS layer. The results show the effectiveness of our approach in terms of the improved irreversible bonding strength, up to 3.060 MPa, for the natural-cured PDMS and 1.373 MPa for the heat-cured PDMS, while the best bonding strength with the existing method in literature is 1.9 MPa. The work is preliminary because the underlying mechanism is only speculative and open for future research.

7.
Int J Pharm ; 626: 122142, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36064075

RESUMO

Neuroblastoma is the most frequently diagnosed extracranial solid tumor in children and accounts for 7 % of all childhood malignancies and 15 % cancer mortality in children. Luteolin (LUT) is recognized by its anticancer activity against several types of cancer. The aim of this study was to prepare chitosan-coated nanoemulsion containing luteolin (NECh-LUT), investigate its potential for brain delivery following intranasal administration, and to evaluate its cytotoxicity against neuroblastoma cells. NECh-LUT was developed by cavitation process and characterized for its size, surface charge, encapsulation efficiency, and mucoadhesion. The developed formulation presented size 68 ± 1 nm, zeta potential + 13 ± 1 mV, and encapsulation efficiency of 85.5 ± 0.3 %. The NECh-LUT presented nearly 6-fold higher permeation through the nasal mucosa ex vivo and prolonged LUT release up to 72 h in vitro, following Baker-Lonsdale kinetic model. The pharmacokinetic evaluation of NECh-LUT revealed a 10-fold increase in drug half-life and a 4.4 times enhancement in LUT biodistribution in brain tissue after intranasal administration of single-dose. In addition, NECh-LUT inhibited the growth of neuroblastoma cells after 24, 48 and 72 h in concentrations starting from 2 µM. The NECh-LUT developed for intranasal administration proved to be a promising alternative for brain delivery of LUT, and a viable option for the treatment of neuroblastoma.


Assuntos
Quitosana , Neuroblastoma , Administração Intranasal , Apoptose , Disponibilidade Biológica , Encéfalo , Criança , Sistemas de Liberação de Medicamentos , Humanos , Luteolina , Neuroblastoma/tratamento farmacológico , Distribuição Tecidual
8.
Pharmaceutics ; 14(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145542

RESUMO

The mechanism of cellular uptake and intracellular fate of nanodiamond/nucleic acid complexes (diamoplexes) are major determinants of its performance as a gene carrier. Our group designed lysine-nanodiamonds (K-NDs) as vectors for nucleic acid delivery. In this work, we modified the surface of K-NDs with histidine to overcome endo-lysosomal entrapment diamoplexes, the major rate limiting step in gene transfer. Histidine is conjugated onto the NDs in two configurations: lysyl-histidine-NDs (HK-NDs) where histidine is loaded on 100% of the lysine moieties and lysine/lysyl-histidine-NDs (H50K50-NDs) where histidine is loaded on 50% of the lysine moieties. Both HK-NDs and H50K50-NDs maintained the optimum size distribution (i.e., <200 nm) and a cationic surface (zeta potential > 20 mV), similar to K-NDs. HK-NDs binds plasmid deoxyribonucleic acid (pDNA) and small interfering ribonucleic acid (siRNA) forming diamoplexes at mass ratios of 10:1 and 60:1, respectively. H50K50-NDs significantly improved nucleic acid binding, forming diamoplexes at a 2:1 mass ratio with pDNA and a 30:1 mass ratio with siRNA, which are at values similar to the K-NDs. The amount of histidine on the surface also impacted the interactions with mammalian cells. The HK-NDs reduced the cell viability by 30% at therapeutic concentrations, while H50K50-NDs maintained more than 90% cell viability, even at the highest concentrations. H50K50-NDs also showed highest cellular uptake within 24 h, followed by K-NDs and HK-NDs. Most functionalized NDs show cellular exit after 5 days, leaving less than 10% of cells with internalized diamonds. The addition of histidine to the ND resulted in higher transfection of anti-green fluorescent protein siRNA (anti-GFP siRNA) with the fraction of GFP knockdown being 0.8 vs. 0.6 for K-NDs at a mass ratio of 50:1. H50K50-NDs further improved transfection by achieving a similar fraction of GFP knockdown (0.8) at a lower mass ratio of 30:1. Overall, this study provides evidence that the addition of histidine, a pH-modulating entity in the functionalization design at an optimized ratio, renders high efficiency to the diamoplexes. Further studies will elucidate the uptake mechanism and intracellular fate to build the relationship between physicochemical characteristics and biological efficacy and create a platform for solid-core nanoparticle-based gene delivery.

9.
Biomater Adv ; 137: 212844, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929273

RESUMO

Enamel is the highest mineralized tissue in the body protecting teeth from external stimuli, infections, and injuries. Enamel lacks the ability to self-repair due to the absence of enamel-producing cells in the erupted teeth. Here, we reported a novel approach to promote enamel-like tissue formation via the delivery of a key ameloblast inducer, T-box1 gene, into a rat dental epithelial stem cell line, HAT-7, using non-viral gene delivery systems based on cationic lipids. We comparatively assessed the lipoplexes prepared from glycyl-lysine-modified gemini surfactants and commercially available 1,2-dioleoyl-3-trimethylammonium-propane lipids at three nitrogen-to phosphate (N/P) ratios of 2.5, 5 and 10. Our findings revealed that physico-chemical characteristics and biological activities of the gemini surfactant-based lipoplexes with a N/P ratio of 5 provide the most optimal outcomes among those examined. HAT-7 cells were transfected with T-box1 gene using the optimal formulation then cultured in conventional 2D cell culture systems. Ameloblast differentiation, mineralization, bio-enamel interface and structure were assessed at different time points over 28 days. Our results showed that our gemini transfection system provides superior gene expression compared to the benchmark agent, while keeping low cytotoxicity levels. T-box1-transfected HAT-7 cells strongly expressed markers of secretory and maturation stages of the ameloblasts, deposited minerals, and produced enamel-like crystals when compared to control cells. Taken together, our gemini surfactant-based T-box1 gene delivery system is effective to accelerate and guide ameloblastic differentiation of dental epithelial stem cells and promote enamel-like tissue formation. This study would represent a significant advance towards the tissue engineering and regeneration of dental enamel.


Assuntos
Nanopartículas , Surfactantes Pulmonares , Animais , Diferenciação Celular , Esmalte Dentário , Excipientes , Técnicas de Transferência de Genes , Lipoproteínas , Nanopartículas/química , Ratos , Células-Tronco , Tensoativos/química
10.
Anal Chim Acta ; 1194: 339404, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063161

RESUMO

Phytosterol oxidation products (POPs) formed by the auto-oxidation of phytosterols can lead to negative health consequences. New liquid chromatography-tandem mass spectrometry (LC-MS/MS) quantitative and qualitative approaches were developed. For quantification, sixteen phytosterol oxidation products (POPs) in liposomal formulations; namely 7-keto, 7-hydroxy, 5,6-epoxy, and 5,6-dihydroxy derivatives of brassicasterol, campesterol, stigmasterol, and ß-sitosterol were quantified. The method has a short run time of 5 min, achieved on a poroshell C18 column, using isocratic elution. To the best of our knowledge, this is the shortest run time among reported methods for the quantitative analysis of POPs. Atmospheric pressure chemical ionization (APCI) was used, and the mobile phase was composed of acetonitrile/methanol (99:1 v/v). The quantitative method was validated as per the FDA guidelines for linearity, accuracy, precision, selectivity, sensitivity, matrix effect, dilution integrity, and stability. The method was applied for the quantification of POPs in liposomal phytosterol formulations prepared with and without tocopherols, as antioxidants. The formulation process had little impact on the formation of POPs as only 7-ketobrassicasterol was quantified in tested samples. The quantified value of POPs in liposomal samples was insignificant to impart any toxicological effects. Other degradation products such as 7-hydroxy, 5,6-epoxy and 5,6-dihydroxy derivatives of brassicasterol, campesterol and ß-sitosterol were below the lower limit of quantification. Phytosterol-containing formulations were then assessed for their oxidative stability after microwave exposure for 5 min. The incorporation of tocopherols significantly increased the stability of phytosterols in the liposomal formulations. Finally, LC-MS/MS qualitative identification of phytosterols obtained from extra virgin olive oil was performed. New POPs, namely 7-ketoavenasterol, and 7-ketomethylenecycloartenol were putatively identified, illustrating the applicability of the method to identify POPs with varying structures present in various phytosterol sources. In fact, it is the first time that 7-ketomethylenecycloartenol is reported as a POP.


Assuntos
Fitosteróis , Óleos de Plantas , Cromatografia Líquida , Lipossomos , Extratos Vegetais , Espectrometria de Massas em Tandem
11.
J Pharm Biomed Anal ; 183: 113104, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32058287

RESUMO

A novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously quantify phytosterols (brassicasterol, campesterol, stigmasterol and ß-sitosterol) and tocopherols (alpha, beta, gamma and delta) entrapped in the lipid bilayer of a liposomal formulation. Apart from liposomes (a pharmaceutical product), the developed method was able to quantify target analytes in agricultural products, thus showing wide applications. Atmospheric pressure chemical ionization (APCI) was employed due to the enhanced ionization of phytosterols and tocopherols in comparison to electrospray ionization. Unlike published work, the chromatographic conditions were modified to simplify the analytical approach. For the first time, a simple isocratic elution (acetonitrile:methanol 99:1 v/v) was utilized for the separation of four phytosterols and four tocopherols in a single run. A substantially better baseline separation of phytosterols were obtained in comparison to reported methods by using poroshell C18 column. The method has a total run time of 7 min, which is the shortest run time among all reported quantitative methods for the simultaneous determination of four phytosterols and four tocopherols. Calibration curves for all phytosterols were linear in the range of 0.05-10 µg/mL. In the case of tocopherols, alpha tocopherol showed linear response in the range of 0.25-10 µg/mL. However, gamma and delta tocopherols exhibited quadratic relationship in the same concentration range (0.25-10 µg/mL). Validation parameters met the International Conference on Harmonization (ICH) guidelines in terms of selectivity, accuracy, precision, repeatability, sensitivity, matrix effects, dilution integrity and stability. The method was, for the first time, successfully applied for the quantifying phytosterols and tocopherols entrapped inside liposomes. An interesting chromatographic phenomenon was observed during sample analysis. Alpha tocopherol (entrapped in the liposomal lipid bilayer) was found to elute at two retention times, 2.53 min and 3.60 min. Such dual separation was not observed in calibration standards and quality controls. It was concluded that the chiral recognition ability of liposomes made up of phosphatidylcholine separated the enantiomers of alpha tocopherol, giving rise to two peaks at two different retention time. To sum, the reported novel LC-MS/MS method addresses three major analytical shortcomings, namely i)longer run time, ii)complex gradient elution and iii)poor baseline separation of phytosterols and tocopherols.


Assuntos
Lipossomos/química , Fitosteróis/química , Tocoferóis/química , Pressão Atmosférica , Calibragem , Colestadienóis/química , Colesterol/análogos & derivados , Colesterol/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Sitosteroides/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Estigmasterol/química , Espectrometria de Massas em Tandem/métodos
12.
J Am Soc Mass Spectrom ; 31(2): 366-378, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922726

RESUMO

Gemini surfactants are a class of lipid molecules that have been successfully used in vitro and in vivo as nonviral gene delivery vectors. However, the biological fate of gemini surfactants has not been well investigated. In particular, the metabolism of gemini surfactants after they enter cells as gene delivery vehicles is unknown. In this work, we used a high-resolution quadrupole-Orbitrap mass spectrometry (Q-Exactive) instrument to detect the metabolites of three model gemini surfactants, namely, (a) unsubstituted (16-3-16), (b) with pyridinium head groups (16(Py)-S-2-S-16(Py)), and (c) substituted with a glycyl-lysine di-peptide (16-7N(GK)-16). The metabolites were characterized, and structures were proposed, based on accurate masses and characteristic product ions. The metabolism of the three gemini surfactants was very different as 16-3-16 was not metabolized in PAM 212 cells, whereas 16(Py)-S-2-S-16(Py) was metabolized primarily via phase I reactions, including oxidation and dealkylation, producing metabolites that could be linked to its observed high toxicity. The third gemini surfactant 16-7N(GK)-16 was metabolized mainly via phase II reactions, including methylation, acetylation, glucose conjugation, palmityl conjugation, and stearyl conjugation. The metabolism of gemini surfactants provides insight for future directions in the design and development of more effective gemini surfactants with lower toxicity. The reported approach can also be applied to study the metabolism of other structurally related gemini surfactants.


Assuntos
Alcenos/metabolismo , Técnicas de Transferência de Genes , Compostos de Amônio Quaternário/metabolismo , Tensoativos/metabolismo , Alcenos/análise , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/análise , Portadores de Fármacos/metabolismo , Camundongos , Compostos de Amônio Quaternário/análise , Tensoativos/análise , Espectrometria de Massas em Tandem
13.
Pharmaceutics ; 11(10)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627471

RESUMO

Canada has a long and rich history of ground-breaking research in drug delivery within academic institutions, pharmaceutical industry and the biotechnology community. Drug delivery refers to approaches, formulations, technologies, and systems for transporting a pharmaceutical compound in the body as needed to safely achieve its desired therapeutic effect. It may involve rational site-targeting, or facilitating systemic pharmacokinetics; in any case, it is typically concerned with both quantity and duration of the presence of the drug in the body. Drug delivery is often approached through a drug's chemical formulation, medical devices or drug-device combination products. Drug delivery is a concept heavily integrated with dosage form development and selection of route of administration; the latter sometimes even being considered part of the definition. Drug delivery technologies modify drug release profile, absorption, distribution and elimination for the benefit of improving product efficacy and safety, as well as patient convenience and adherence. Over the past 30 years, numerous Canadian-based biotechnology companies have been formed stemming from the inventions conceived and developed within academic institutions. Many have led to the development of important drug delivery products that have enhanced the landscape of drug therapy in the treatment of cancer to infectious diseases.  This Special Issue serves to highlight the progress of drug delivery within Canada. We invited articles on all aspects of drug delivery sciences from pre-clinical formulation development to human clinical trials that bring to light the world-class research currently undertaken in Canada for this Special Issue.

14.
AAPS J ; 21(5): 98, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388860

RESUMO

Gemini surfactants are promising molecules utilized as non-viral gene delivery vectors. However, little is known about their cellular uptake and distribution after they release their therapeutic cargo. Therefore, we quantitatively evaluated the cellular uptake and distribution of three gemini surfactants: unsubstituted (16-3-16), with pyridinium head groups (16(Py)-S-2-S-16(Py)) and substituted with a glycyl-lysine di-peptide (16-7N(GK)-16). We also assessed the relationship between cellular uptake and distribution of each gemini surfactant and its overall efficiency and toxicity. Epidermal keratinocytes PAM 212 were treated with gemini surfactant nanoparticles formulated with plasmid DNA and harvested at various time points to collect the enriched nuclear, mitochondrial, plasma membrane, and cytosolic fractions. Gemini surfactants were then extracted from each subcellular fraction and quantified using a validated flow injection analysis-tandem mass spectrometry (FIA-MS/MS) method. Mass spectrometry is superior to the use of fluorescent tags that alter the physicochemical properties and pharmacokinetics of the nanoparticles and can be cleaved from the gemini surfactant molecules within biological systems. Overall, a significantly higher cellular uptake was observed for 16-7N(GK)-16 (17.0%) compared with 16-3-6 (3.6%) and 16(Py)-S-2-S-16(Py) (1.4%), which explained the relatively higher transfection efficiency of 16-7N(GK)-16. Gemini surfactants 16-3-16 and 16(Py)-S-2-S-16(Py) displayed similar subcellular distribution patterns, with major accumulation in the nucleus, followed by the mitochondrion, cytosol, and plasma membrane. In contrast, 16-7N(GK)-16 was relatively evenly distributed across all four subcellular fractions. However, accumulation within the nucleus after 5 h of treatment was the highest for 16(Py)-S-2-S-16(Py) (50.3%), followed by 16-3-16 (41.8%) and then 16-7N(GK)-16 (33.4%), possibly leading to its relatively higher toxicity. Graphical Abstract.


Assuntos
Técnicas de Transferência de Genes , Queratinócitos/metabolismo , Nanopartículas , Tensoativos/química , Animais , Linhagem Celular , Análise de Injeção de Fluxo , Queratinócitos/citologia , Camundongos , Espectrometria de Massas em Tandem , Fatores de Tempo , Transfecção
15.
Pharmaceutics ; 11(9)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443452

RESUMO

ß-cyclodextrin (ßCD) has been widely explored as an excipient for pharmaceuticals and nutraceuticals as it forms stable host-guest inclusion complexes and enhances the solubility of poorly soluble active agents. To enhance intracellular drug delivery, ßCD was chemically conjugated to an 18-carbon chain cationic gemini surfactant which undergoes self-assembly to form nanoscale complexes. The novel gemini surfactant-modified ßCD carrier host (hereafter referred to as 18:1ßCDg) was designed to combine the solubilization and encapsulation capacity of the ßCD macrocycle and the cell-penetrating ability of the gemini surfactant conjugate. Melphalan (Mel), a chemotherapeutic agent for melanoma, was selected as a model for a poorly soluble drug. Characterization of the 18:1ßCDg-Mel host-guest complex was carried out using 1D/2D 1H NMR spectroscopy and dynamic light scattering (DLS). The 1D/2D NMR spectral results indicated the formation of stable and well-defined 18:1ßCDg-Mel inclusion complexes at the 2:1 host-guest mole ratio; whereas, host-drug interaction was attenuated at greater 18:1ßCDg mole ratio due to hydrophobic aggregation that accounts for the reduced Mel solubility. The in vitro evaluations were performed using monolayer, 3D spheroid, and Mel-resistant melanoma cell lines. The 18:1ßCDg-Mel complex showed significant enhancement in the chemotherapeutic efficacy of Mel with 2-3-fold decrease in Mel half maximal inhibitory concentration (IC50) values. The findings demonstrate the potential applicability of the 18:1ßCDg delivery system as a safe and efficient carrier for a poorly soluble chemotherapeutic in melanoma therapy.

16.
Methods Mol Biol ; 2000: 203-225, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148017

RESUMO

Diquaternary ammonium-based gemini surfactants have been investigated widely as nonviral gene delivery systems. These unique cationic lipids have versatility in their chemical structure, show relatively low toxicity, are able to compact genetic material (pDNA, RNA) into nano-sized lipoplexes, and can be easily produced. In addition, the gemini surfactants show significant improvement in the transfection activity and biocompatibility compared to other cationic lipids used as nonviral gene delivery agents. The successful applications of gemini surfactant-based lipoplexes as topical gene delivery systems in animal models indicate their potential as noninvasive carriers for genetic immunization, theranostic agents, and in other gene therapy treatments. Detailed physicochemical characterization of gemini surfactant lipoplexes is a key factor in terms of formulation optimization and elucidation of the cellular uptake and stability of the lipoplexes system. In this chapter, we describe in detail different formulation methods to prepare gemini surfactant lipoplexes and comprehensive physicochemical characterization. In addition, we illustrate general protocols for in vitro evaluations.


Assuntos
Peptídeos/química , Tensoativos , Transfecção/métodos , Animais , Células COS , Chlorocebus aethiops , Técnicas de Transferência de Genes
17.
Polymers (Basel) ; 11(4)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31027272

RESUMO

The field of polymeric nanoparticles is quickly expanding and playing a pivotal role in a wide spectrum of areas ranging from electronics, photonics, conducting materials, and sensors to medicine, pollution control, and environmental technology. Among the applications of polymers in medicine, gene therapy has emerged as one of the most advanced, with the capability to tackle disorders from the modern era. However, there are several barriers associated with the delivery of genes in the living system that need to be mitigated by polymer engineering. One of the most crucial challenges is the effectiveness of the delivery vehicle or vector. In last few decades, non-viral delivery systems have gained attention because of their low toxicity, potential for targeted delivery, long-term stability, lack of immunogenicity, and relatively low production cost. In 1987, Felgner et al. used the cationic lipid based non-viral gene delivery system for the very first time. This breakthrough opened the opportunity for other non-viral vectors, such as polymers. Cationic polymers have emerged as promising candidates for non-viral gene delivery systems because of their facile synthesis and flexible properties. These polymers can be conjugated with genetic material via electrostatic attraction at physiological pH, thereby facilitating gene delivery. Many factors influence the gene transfection efficiency of cationic polymers, including their structure, molecular weight, and surface charge. Outstanding representatives of polymers that have emerged over the last decade to be used in gene therapy are synthetic polymers such as poly(l-lysine), poly(l-ornithine), linear and branched polyethyleneimine, diethylaminoethyl-dextran, poly(amidoamine) dendrimers, and poly(dimethylaminoethyl methacrylate). Natural polymers, such as chitosan, dextran, gelatin, pullulan, and synthetic analogs, with sophisticated features like guanidinylated bio-reducible polymers were also explored. This review outlines the introduction of polymers in medicine, discusses the methods of polymer synthesis, addressing top down and bottom up techniques. Evaluation of functionalization strategies for therapeutic and formulation stability are also highlighted. The overview of the properties, challenges, and functionalization approaches and, finally, the applications of the polymeric delivery systems in gene therapy marks this review as a unique one-stop summary of developments in this field.

18.
Pharmaceutics ; 11(4)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995762

RESUMO

Phytosterols are plant sterols recommended as adjuvant therapy for hypercholesterolemia and tocopherols are well-established anti-oxidants. However, thermo-sensitivity, lipophilicity and formulation-dependent efficacy bring challenges in the development of functional foods, enriched with phytosterols and tocopherols. To address this, we developed liposomes containing brassicasterol, campesterol and ß-sitosterol obtained from canola oil deodorizer distillate, along with alpha, gamma and delta tocopherol. Three approaches; thin film hydration-homogenization, thin film hydration-ultrasonication and Mozafari method were used for formulation. Validated liquid chromatographic tandem mass spectrometry (LC-MS/MS) was utilized to determine the entrapment efficiency of bioactives. Stability studies of liposomal formulations were conducted before and after pasteurization using high temperature short time (HTST) technique for a month. Vesicle size after homogenization and ultrasonication (<200 nm) was significantly lower than by Mozafari method (>200 nm). However, zeta potential (-9 to -14 mV) was comparable which was adequate for colloidal stability. Entrapment efficiencies were greater than 89% for all the phytosterols and tocopherols formulated by all three methods. Liposomes with optimum particle size and zeta potential were incorporated in model orange juice, showing adequate stability after pasteurization (72 °C for 15 s) for a month. Liposomes containing phytosterols obtained from canola waste along with tocopherols were developed and successfully applied as a food additive using model orange juice.

19.
Mol Pharm ; 16(2): 542-551, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30605337

RESUMO

Melanoma is a devastating form of skin cancer with high tendency to metastasis. This work addresses the development of new targeted nanoparticles that can be used for single-photon emission computed tomography (SPECT) imaging of melanoma. Melanoma-specific glycoprotein nonmetastatic b (GPNMB) antigen targeted and nontargeted gemini nanoparticles were prepared, characterized, and radiolabeled with 111In. 111In-labeled nanoparticles were composed of gemini surfactant grafted with monoclonal antibody Fab fragment that targeted GPNMB. Specific uptake of GPNMB-Fab was studied in six melanoma cell lines using flow cytometry. In vitro cellular uptake and internalization were studied using flow cytometry, confocal laser scanning microscopy, and radiometric techniques. Specific uptake of anti-GPNMB targeted nanoparticles was observed in GPNMB expressing cells, which was higher than low expressing or control cells. In vitro studies showed that conjugation of GPNMB targeted nanoparticles led to enhanced intracellular uptake of the nanodelivery system, which is critical for drug delivery. In vivo distribution of the nanoparticles was studied by microSPECT/CT imaging and ex vivo biodistribution. Tumor uptake was significantly higher ( p < 0.05) in nontargeted nanoparticles (5.47 ± 0.46%IA/cc) compared to GPNMB targeted nanoparticles (1.87 ± 0.27% ID/cc), which might be attributed to the high spleen uptake of the targeted formulation. These findings demonstrated that the radiolabeled gemini nanoparticles are promising for image-guided radiotherapy of melanoma. Formulation optimization is needed to improved tumor uptake and in vivo intracellular delivery for radiotherapeutic applications.


Assuntos
Calcitriol/análogos & derivados , Proteínas do Olho/metabolismo , Índio/química , Melanoma/tratamento farmacológico , Glicoproteínas de Membrana/metabolismo , Nanopartículas/química , Tensoativos/química , Tensoativos/uso terapêutico , Animais , Calcitriol/química , Calcitriol/uso terapêutico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Melanoma/metabolismo , Camundongos , Tomografia Computadorizada de Emissão de Fóton Único
20.
J Pharm Biomed Anal ; 164: 164-172, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30390558

RESUMO

A simple, reliable flow injection analysis (FIA)-tandem mass spectrometric (MS/MS) method was developed for the determination of gemini surfactants, designated as 16-3-16, 16(Py)-S-2-S-(Py)16 and 16-7N(GK)-16, as gene delivery agents in cellular matrix. 16-3-16 is a conventional gemini surfactant bearing two quaternary amines, linked by a 3-carbon spacer region, 16(Py)-S-2-S-(Py)16 contains two pyridinium head groups, while 16-7N(GK)-16 bears a glycine-lysine di-peptide in the space region. The method was fully validated according to USFDA guidelines. It is the first time that FIA-MS/MS method was developed for the quantification of gemini surfactants, belonging to different structural families. The method was superior to existing liquid chromatographic (LC)-MS/MS methods in terms of sensitivity and time of analysis. Positive electrospray ionization (ESI) in the multiple reaction monitoring (MRM) mode were used on a triple quadrupole-linear ion trap (4000 QTRAP®) instrument. Deuterated internal standards were used to correct for matrix effects and variations in ionization within the ESI source. Isotope dilution standard curves were established in cellular matrix, with a linear range of 10 nM-1000 nM for 16-3-16 and 16(Py)-S-2-S-(Py)16, and 20 nM-2000 nM for 16-7N(GK)-16. The precision, accuracy, recovery and stability were all within the acceptable ranges as per the USFDA guidelines. The method was successfully applied for the quantification of target gemini surfactants in the nuclear fraction of PAM 212 keratinocyte cells treated with nanoparticles, which varied significantly and may explain differences in the observed efficiency and/or toxicity of these gemini surfactants in gene delivery.


Assuntos
Análise de Injeção de Fluxo/métodos , Técnicas de Transferência de Genes , Tensoativos/análise , Espectrometria de Massas em Tandem/métodos , Animais , Linhagem Celular Tumoral , Núcleo Celular/química , Análise de Injeção de Fluxo/instrumentação , Queratinócitos , Camundongos , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...