Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 5122, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332189

RESUMO

Ocular cells are highly dependent on mitochondrial function due to their high demand of energy supply and their constant exposure to oxidative stress. Indeed, mitochondrial dysfunction is highly implicated in various acute, chronic, and genetic disorders of the visual system. It has recently been shown that mitochondrial transplantation (MitoPlant) temporarily protects retinal ganglion cells (RGCs) from cell death during ocular ischemia. Here, we characterized MitoPlant dynamics in retinal ganglion precursor-like cells, in steady state and under oxidative stress. We developed a new method for detection of transplanted mitochondria using qPCR, based on a difference in the mtDNA sequence of C57BL/6 and BALB/c mouse strains. Using this approach, we show internalization of exogenous mitochondria already three hours after transplantation, and a decline in mitochondrial content after twenty four hours. Interestingly, exposure of target cells to moderate oxidative stress prior to MitoPlant dramatically enhanced mitochondrial uptake and extended the survival of mitochondria in recipient cells by more than three fold. Understanding the factors that regulate the exogenous mitochondrial uptake and their survival may promote the application of MitoPlant for treatment of chronic and genetic mitochondrial diseases.


Assuntos
Doenças Mitocondriais , Células Ganglionares da Retina , Animais , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Estresse Oxidativo , Células Ganglionares da Retina/metabolismo
2.
Exp Eye Res ; 204: 108431, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33406396

RESUMO

Uveal melanoma (UM) and conjunctival melanoma (CM) are ocular malignancies that give rise to life-threatening metastases. Although local disease can often be treated successfully, it is often associated with significant vision impairment and treatments are often not effective against metastatic disease. Novel treatment modalities that preserve vision may enable elimination of small tumors and may prevent subsequent metastatic spread. Very few mouse models of metastatic CM and UM are available for research and for development of novel therapies. One of the challenges is to follow tumor growth in-vivo and to determine the right size for treatment, mainly of the posterior, choroidal melanoma. Hence, the purpose of this study was to establish a simple, noninvasive imaging tool that will simplify visualization and tumor follow-up in mouse models of CM and UM. Tumors were induced by inoculation of murine B16LS9 cells into the sub-conjunctival or the choroidal space of a C57BL/6 mouse eye under a surgical microscope. Five to ten days following injection, tumor size was assessed by Phoenix MicronIV™ image-guided Optical Coherence Tomography (OCT) imaging, which included a real-time camera view and OCT scan of the conjunctiva and the retina. In addition, tumor size was evaluated by ultrasound and histopathological examination of eye sections. Tumor growth was observed 5-9 days following sub-conjunctival or sub-retinal injection of seven-thousand or seventy-thousand cells, respectively. A clear tumor mass was detected at these regions using the MicronIV™ imaging system camera and OCT scans. Histology of eye sections confirmed the presence of tumor tissue. OCT allowed an accurate measurement of tumor size in the UM model and a qualitative assessment of tumor size in the CM model. Moreover, OCT enabled assessing the success rate of the choroidal tumor induction and importantly, predicted final tumor size already on the day of cell inoculation. In conclusion, by using a simple, non-invasive imaging tool, we were able to follow intraocular tumor growth of both CM and UM, and to define, already at the time of cell inoculation, a grading scale to evaluate tumor size. This tool may be utilized for evaluation of new mouse models for CM and UM, as well as for testing new therapies for these diseases.


Assuntos
Neoplasias da Túnica Conjuntiva/diagnóstico por imagem , Modelos Animais de Doenças , Melanoma/diagnóstico por imagem , Tomografia de Coerência Óptica , Ultrassonografia , Neoplasias Uveais/diagnóstico por imagem , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Neoplasias da Túnica Conjuntiva/metabolismo , Neoplasias da Túnica Conjuntiva/patologia , Imuno-Histoquímica , Antígeno MART-1/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Antígenos Específicos de Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monofenol Mono-Oxigenase/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia
3.
Neuron ; 77(2): 299-310, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23352166

RESUMO

How neurons form synapses within specific layers remains poorly understood. In the Drosophila medulla, neurons target to discrete layers in a precise fashion. Here we demonstrate that the targeting of L3 neurons to a specific layer occurs in two steps. Initially, L3 growth cones project to a common domain in the outer medulla, overlapping with the growth cones of other neurons destined for a different layer through the redundant functions of N-Cadherin (CadN) and Semaphorin-1a (Sema-1a). CadN mediates adhesion within the domain and Sema-1a mediates repulsion through Plexin A (PlexA) expressed in an adjacent region. Subsequently, L3 growth cones segregate from the domain into their target layer in part through Sema-1a/PlexA-dependent remodeling. Together, our results and recent studies argue that the early medulla is organized into common domains, comprising processes bound for different layers, and that discrete layers later emerge through successive interactions between processes within domains and developing layers.


Assuntos
Bulbo/metabolismo , Sinapses/metabolismo , Vias Visuais/metabolismo , Animais , Animais Geneticamente Modificados , Comunicação Celular/fisiologia , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Cones de Crescimento/metabolismo , Cones de Crescimento/fisiologia , Bulbo/citologia , Bulbo/fisiologia , Mapeamento de Interação de Proteínas , Sinapses/genética , Sinapses/fisiologia , Vias Visuais/citologia , Vias Visuais/fisiologia
4.
Cell ; 145(3): 371-82, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21529711

RESUMO

The ubiquitin-proteasome system catalyzes the degradation of intracellular proteins. Although ubiquitination of proteins determines their stabilities, there is growing evidence that proteasome function is also regulated. We report the functional characterization of a conserved proteasomal regulatory complex. We identified DmPI31 as a binding partner of the F box protein Nutcracker, a component of an SCF ubiquitin ligase (E3) required for caspase activation during sperm differentiation in Drosophila. DmPI31 binds Nutcracker via a conserved mechanism that is also used by mammalian FBXO7 and PI31. Nutcracker promotes DmPI31 stability, which is necessary for caspase activation, proteasome function, and sperm differentiation. DmPI31 can activate 26S proteasomes in vitro, and increasing DmPI31 levels suppresses defects caused by diminished proteasome activity in vivo. Furthermore, loss of DmPI31 function causes lethality, cell-cycle abnormalities, and defects in protein degradation, demonstrating that DmPI31 is physiologically required for normal proteasome activity.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Proteínas F-Box/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Caspases/metabolismo , Linhagem Celular , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Proteoma/análise , Alinhamento de Sequência , Espermatogênese , Testículo/metabolismo
5.
Development ; 137(10): 1679-88, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20392747

RESUMO

Terminal differentiation of male germ cells in Drosophila and mammals requires extensive cytoarchitectural remodeling, the elimination of many organelles, and a large reduction in cell volume. The associated process, termed spermatid individualization, is facilitated by the apoptotic machinery, including caspases, but does not result in cell death. From a screen for genes defective in caspase activation in this system, we isolated a novel F-box protein, which we termed Nutcracker, that is strictly required for caspase activation and sperm differentiation. Nutcracker interacts through its F-box domain with members of a Cullin-1-based ubiquitin ligase complex (SCF): Cullin-1 and SkpA. This ubiquitin ligase does not regulate the stability of the caspase inhibitors DIAP1 and DIAP2, but physically binds Bruce, a BIR-containing giant protein involved in apoptosis regulation. Furthermore, nutcracker mutants disrupt proteasome activity without affecting their distribution. These findings define a new SCF complex required for caspase activation during sperm differentiation and highlight the role of regulated proteolysis during this process.


Assuntos
Caspases/metabolismo , Diferenciação Celular/genética , Proteínas de Drosophila/fisiologia , Drosophila/genética , Proteínas F-Box/fisiologia , Espermatozoides/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Diferenciação Celular/fisiologia , Drosophila/metabolismo , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ativação Enzimática/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Modelos Biológicos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Espermatozoides/metabolismo , Espermatozoides/ultraestrutura , Testículo/metabolismo , Testículo/fisiologia
6.
Curr Opin Cell Biol ; 21(6): 878-84, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19850458

RESUMO

The regulation of apoptosis (programmed cell death) has been the subject of a vast body of research because of its implications in normal development, tissue homeostasis and a wide range of diseases. The ubiquitin-proteasome system (UPS) plays a prominent role in the control of apoptosis by targeting key cell death proteins, including caspases, the central executioners of apoptosis. Here we summarize the major findings on the function of the UPS in both pro- and anti-apoptotic regulation.


Assuntos
Apoptose/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Caspases/metabolismo , Humanos , Transdução de Sinais
7.
PLoS Biol ; 5(10): e251, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17880263

RESUMO

In both insects and mammals, spermatids eliminate their bulk cytoplasm as they undergo terminal differentiation. In Drosophila, this process of dramatic cellular remodeling requires apoptotic proteins, including caspases. To gain further insight into the regulation of caspases, we screened a large collection of sterile male flies for mutants that block effector caspase activation at the onset of spermatid individualization. Here, we describe the identification and characterization of a testis-specific, Cullin-3-dependent ubiquitin ligase complex that is required for caspase activation in spermatids. Mutations in either a testis-specific isoform of Cullin-3 (Cul3(Testis)), the small RING protein Roc1b, or a Drosophila orthologue of the mammalian BTB-Kelch protein Klhl10 all reduce or eliminate effector caspase activation in spermatids. Importantly, all three genes encode proteins that can physically interact to form a ubiquitin ligase complex. Roc1b binds to the catalytic core of Cullin-3, and Klhl10 binds specifically to a unique testis-specific N-terminal Cullin-3 (TeNC) domain of Cul3(Testis) that is required for activation of effector caspase in spermatids. Finally, the BIR domain region of the giant inhibitor of apoptosis-like protein dBruce is sufficient to bind to Klhl10, which is consistent with the idea that dBruce is a substrate for the Cullin-3-based E3-ligase complex. These findings reveal a novel role of Cullin-based ubiquitin ligases in caspase regulation.


Assuntos
Caspases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , Proteínas Culina/metabolismo , Drosophila melanogaster/enzimologia , Espermatozoides/citologia , Espermatozoides/enzimologia , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/genética , Proteínas Culina/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ativação Enzimática , Feminino , Regulação Enzimológica da Expressão Gênica , Masculino , Dados de Sequência Molecular , Mutação , Espermatogênese/fisiologia , Testículo/enzimologia
8.
EMBO J ; 25(1): 232-43, 2006 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-16362035

RESUMO

Cytochrome C has two apparently separable cellular functions: respiration and caspase activation during apoptosis. While a role of the mitochondria and cytochrome C in the assembly of the apoptosome and caspase activation has been established for mammalian cells, the existence of a comparable function for cytochrome C in invertebrates remains controversial. Drosophila possesses two cytochrome c genes, cyt-c-d and cyt-c-p. We show that only cyt-c-d is required for caspase activation in an apoptosis-like process during spermatid differentiation, whereas cyt-c-p is required for respiration in the soma. However, both cytochrome C proteins can function interchangeably in respiration and caspase activation, and the difference in their genetic requirements can be attributed to differential expression in the soma and testes. Furthermore, orthologues of the apoptosome components, Ark (Apaf-1) and Dronc (caspase-9), are also required for the proper removal of bulk cytoplasm during spermatogenesis. Finally, several mutants that block caspase activation during spermatogenesis were isolated in a genetic screen, including mutants with defects in spermatid mitochondrial organization. These observations establish a role for the mitochondria in caspase activation during spermatogenesis.


Assuntos
Caspases/metabolismo , Respiração Celular , Citocromos c/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Espermatogênese , Sequência de Aminoácidos , Animais , Apoptose , Proteínas de Transporte/genética , Caspases/genética , Respiração Celular/genética , Citocromos c/análise , Citocromos c/genética , Drosophila/enzimologia , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Ativação Enzimática , Genes Letais , Infertilidade Masculina/enzimologia , Infertilidade Masculina/genética , Masculino , Mitocôndrias/fisiologia , Dados de Sequência Molecular , Mutação , Espermátides/citologia , Espermátides/enzimologia , Espermatogênese/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...