Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Theor Biol ; 545: 111104, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35337794

RESUMO

New experimental data have shown how the periodic exposure of cells to low oxygen levels (i.e., cyclic hypoxia) impacts their progress through the cell-cycle. Cyclic hypoxia has been detected in tumours and linked to poor prognosis and treatment failure. While fluctuating oxygen environments can be reproduced in vitro, the range of oxygen cycles that can be tested is limited. By contrast, mathematical models can be used to predict the response to a wide range of cyclic dynamics. Accordingly, in this paper we develop a mechanistic model of the cell-cycle that can be combined with in vitro experiments to better understand the link between cyclic hypoxia and cell-cycle dysregulation. A distinguishing feature of our model is the inclusion of impaired DNA synthesis and cell-cycle arrest due to periodic exposure to severely low oxygen levels. Our model decomposes the cell population into five compartments and a time-dependent delay accounts for the variability in the duration of the S phase which increases in severe hypoxia due to reduced rates of DNA synthesis. We calibrate our model against experimental data and show that it recapitulates the observed cell-cycle dynamics. We use the calibrated model to investigate the response of cells to oxygen cycles not yet tested experimentally. When the re-oxygenation phase is sufficiently long, our model predicts that cyclic hypoxia simply slows cell proliferation since cells spend more time in the S phase. On the contrary, cycles with short periods of re-oxygenation are predicted to lead to inhibition of proliferation, with cells arresting from the cell-cycle in the G2 phase. While model predictions on short time scales (about a day) are fairly accurate (i.e, confidence intervals are small), the predictions become more uncertain over longer periods. Hence, we use our model to inform experimental design that can lead to improved model parameter estimates and validate model predictions.


Assuntos
Hipóxia , Oxigênio , Hipóxia Celular/fisiologia , DNA/metabolismo , Humanos , Modelos Teóricos , Oxigênio/metabolismo
3.
Nucleic Acids Res ; 49(13): 7492-7506, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34197599

RESUMO

Tumor heterogeneity includes variable and fluctuating oxygen concentrations, which result in the accumulation of hypoxic regions in most solid tumors. Tumor hypoxia leads to increased therapy resistance and has been linked to genomic instability. Here, we tested the hypothesis that exposure to levels of hypoxia that cause replication stress could increase APOBEC activity and the accumulation of APOBEC-mediated mutations. APOBEC-dependent mutational signatures have been well-characterized, although the physiological conditions which underpin them have not been described. We demonstrate that fluctuating/cyclic hypoxic conditions which lead to replication catastrophe induce the expression and activity of APOBEC3B. In contrast, stable/chronic hypoxic conditions which induce replication stress in the absence of DNA damage are not sufficient to induce APOBEC3B. Most importantly, the number of APOBEC-mediated mutations in patient tumors correlated with a hypoxia signature. Together, our data support the conclusion that hypoxia-induced replication catastrophe drives genomic instability in tumors, specifically through increasing the activity of APOBEC3B.


Assuntos
Citidina Desaminase/metabolismo , Replicação do DNA , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias/enzimologia , Desaminases APOBEC/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Desaminação , Humanos , Hidroxiureia/toxicidade , Estresse Fisiológico/genética
4.
Cancers (Basel) ; 13(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374581

RESUMO

Regions of hypoxia occur in most if not all solid cancers. Although the presence of tumor hypoxia is a common occurrence, the levels of hypoxia and proportion of the tumor that are hypoxic vary significantly. Importantly, even within tumors, oxygen levels fluctuate due to changes in red blood cell flux, vascular remodeling and thermoregulation. Together, this leads to cyclic or intermittent hypoxia. Tumor hypoxia predicts for poor patient outcome, in part due to increased resistance to all standard therapies. However, it is less clear how cyclic hypoxia impacts therapy response. Here, we discuss the causes of cyclic hypoxia and, importantly, which imaging modalities are best suited to detecting cyclic vs. chronic hypoxia. In addition, we provide a comparison of the biological response to chronic and cyclic hypoxia, including how the levels of reactive oxygen species and HIF-1 are likely impacted. Together, we highlight the importance of remembering that tumor hypoxia is not a static condition and that the fluctuations in oxygen levels have significant biological consequences.

5.
Biomedicines ; 8(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825120

RESUMO

The androgen receptor (AR) plays a critical role in prostate cancer (PCa) development and metastasis. Thus, blocking AR activity and its downstream signaling constitutes a major strategy for PCa treatment. Here, we report on the potent anti-PCa activity of a small-molecule imidazoacridinone, C-1311. In AR-positive PCa cells, C-1311 was found to inhibit the transcriptional activity of AR, uncovering a novel mechanism that may be relevant for its anticancer effect. Mechanistically, C-1311 decreased the AR binding to the prostate-specific antigen (PSA) promoter, reduced the PSA protein level, and, as shown by transcriptome sequencing, downregulated numerous AR target genes. Importantly, AR-negative PCa cells were also sensitive to C-1311, suggesting a promising efficacy in the androgen-independent PCa sub-type. Irrespective of AR status, C-1311 induced DNA damage, arrested cell cycle progression, and induced apoptosis. RNA sequencing indicated significant differences in the transcriptional response to C-1311 between the PCa cells. Gene ontology analysis showed that in AR-dependent PCa cells, C-1311 mainly affected the DNA damage response pathways. In contrast, in AR-independent PCa cells, C-1311 targeted the cellular metabolism and inhibited the genes regulating glycolysis and gluconeogenesis. Together, these results indicate that C-1311 warrants further development for the treatment of PCa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...