Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38790693

RESUMO

Lemon is a fruit rich in antioxidant properties and has several health benefits, namely the reduction of skin edema and anticarcinogenic properties, which are due to its high content of bioactive compounds. Melatonin can improve and preserve the properties of lemon for longer and also has health benefits. The aim of this study was to evaluate the effects of oral administration of lemon juice after melatonin treatment on murinometric parameters of wild-type (WT) mice and transgenic mice carrying human papillomavirus (HPV). Two trials were performed for oral administration of the lemon extract compound: in drinking water and in diet. First of all, lemons were treated by immersion with melatonin at 10 mM. Then, lemons were squeezed, and the juice obtained was freeze-dried and stored to be subsequently added to drinking water or diet, according to the assay. Thus, mice were divided into eight groups in the drink assay (each with n = 5): group 1 (G1, WT, control), group 2 (G2, WT, 1 mL lemon), group 3 (G3, WT, 1.5 mL lemon), group 4 (G4, WT, 2 mL lemon), group 5 (G5, HPV16, control), group 6 (G6, HPV16, 1 mL lemon) group 7 (G6, HPV16, 1.5 mL lemon) and group 8 (G6, HPV16, 2 mL lemon). The diet assay was divided into four groups: group 1 (G1, WT, control), group 2 (G2, WT, 4 mL lemon), group 3 (G3, HPV16, control) and group 4 (G4, HPV16, 4 mL lemon). In the drink assay, the highest concentration of melatonin (308 ng/100 mL) was for groups 4 and 8, while in the food assay, there was only one concentration of melatonin (9.96 ng/g) for groups 2 and 4. Both trials lasted 30 days. During this time, body weight, food and water were recorded. Afterward, they were sacrificed, and samples were collected for different analyses. At the concentrations used, the lemon juice with melatonin had no adverse effects on the animals' health and showed a positive outcome in modifying weight gain and enhancing antioxidant activity in mice. Moreover, a reduction in the incidence of histological lesions was observed in treated animals. Further research is needed to better understand the effects of lemon extract on health and treatment outcomes in this animal model.

2.
Foods ; 12(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37569248

RESUMO

Spain is a great producer of organic lemon; however, it is necessary to reduce the losses caused by post-harvest diseases. Melatonin (MEL) is a naturally occurring compound with physiological functions in fruit growth and ripening and is able to modulate postharvest ripening and senescence, most of it being concentrated in climacteric fruit. Thus, the aim of this study was to apply MEL to organic lemon fruit with stems and leaves (LEAF) and to organic lemon without those components (LEAFLESS) after harvesting and storage during 21 days at 2 °C to understand the effects of this treatment on the fruit quality. For this purpose, two experiments were carried out. First, MEL was applied at 0.01 mM, 0.1 mM and 1.0 mM by immersion for 15 min on lemon fruits, and the quality parameters and bioactive compounds of the fruit were analysed. Subsequently, a second experiment was carried out where the best concentration (1 mM) was selected and another time (15 and 30 min) was added, with the same quality parameters being analysed. As a result, we observed that all MEL treatments showed positive effects on weight loss reduction, softening (higher fruit firmness), total acidity and lower colour changes. Total phenols increased in MEL-treated lemons, both in peel and juice. For the three concentrations tested, the best efficiency was obtained with MEL at 1.0 mM, while LEAF lemons were the most effective. In conclusion, lemons containing stems and leaves (LEAF) improved preservability by using MEL at 1.0 mM with better organoleptic quality and enhanced phenolic compounds.

3.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203428

RESUMO

γ-Aminobutyric acid (GABA) plays important roles in plant development, including the maintenance of fruit quality when applied as postharvest treatment. However, little information is available about the effects of preharvest GABA treatments. Thus, GABA (10, 50 and 100 mM) was applied as foliar spray at key points of fruit development in three sweet cherry cultivars and over two years. The results show that quality parameters, such as total soluble solid content, titratable acidity and firmness were higher in the fruit from GABA-treated trees than in the controls, either at harvest or during four weeks of cold storage. In addition, the total phenolic and total and individual anthocyanin concentrations were also enhanced by GABA treatments and the fruit color was improved. The activities of the antioxidant enzymes catalase, ascorbate peroxidase and peroxidase were also enhanced by the GABA treatments. The most effective concentration was 50 mM, which led to extending the storage period of sweet cherries with high quality traits to up to four weeks, while for the controls this was two weeks. Thus, GABA treatment had a clear effect on delaying the postharvest ripening and senescence processes in sweet cherries, with an additional effect on enhancing the content of bioactive compounds, such as phenolics and anthocyanins, with antioxidant properties and health benefits.


Assuntos
Antioxidantes , Prunus avium , Antioxidantes/farmacologia , Antocianinas/farmacologia , Peroxidases , Fenóis/farmacologia , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...