Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 452: 139513, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38713982

RESUMO

The real-time monitoring of the pH values of alcoholic beverages was performed with a compact wireless device based on a colorimetric detection method with the Hue (H) as the analytical signal working in a pH range of 2.50-6.50. This device represents the first colorimetric pH meter reported in the literature monitoring in real-time the pH value of colored solutions. This pH meter consists of I) a nitrocellulose membrane impregnated with a pH-sensitive gel; II) a CCD camera for color acquisition; III) an electronic board with the calibration profiles of H vs. pH, and IV) a display to read the measured pH. It was applied to the pH determination of a white wine, a prosecco white wine, and a double malt beer leading to the values of pHwine= 3.30, pHprosecco= 3.33, pHbeer = 4.29. The analytical performance is comparable to the glass electrode with an accuracy error ≤ 0.05 pH units.

2.
ACS Sens ; 9(3): 1482-1488, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38416572

RESUMO

A pH colorimetric sensor array (CSA) was prepared on a nitrocellulose membrane and used for accurate pH measurement in highly concentrated saline solutions. The CSAs consisted of sensing spots made of a suitable OrMoSil polymer prepared from organo-fluorinated-silane precursors and/or organosilane with tetraethyl orthosilicate hosting an acid-base indicator. Four CSAs were prepared: D, 1F, 2F, and 3F. In D, a nonfluorinated organosilane was present. From 1F to 3F, the concentration of the fluorinated organosilane increased and improved the pH measurement accuracy in highly saline concentrations. No recalibrations were required, and the analytical signal was stable in time. D, 1F, 2F, and 3F were deposited in triplicate, and they were prepared to work in the seawater pH interval (7.50-8.50). The use of fluorinated precursors led to a lower pH prediction error and tailored the interval of the CSA at more basic pH values so that the inflection points of the sigmoidal calibrations of D, 1F, 2F, and 3F moved from 6.97 to 7.98. The overall pH prediction error was 0.10 pH (1F), 0.02 pH (2F), and 0.04 pH units (3F). The CSAs were stable, reversible, reusable, and independent of salinity (S) between 20 and 40. The performances of the CSA were compared with those of a glass electrode, whose pHNIST values were converted in the pHSWS scale through a conversion equation. Being unaffected by the typical drawback of the glass electrode, the CSAs can be used directly in seawater real samples, and it validated the proposed conversion equation.


Assuntos
Colorimetria , Compostos de Organossilício , Concentração de Íons de Hidrogênio , Água do Mar , Eletrodos , Solução Salina
3.
Nat Commun ; 15(1): 834, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280888

RESUMO

The alloying process plays a pivotal role in the development of advanced multifunctional plasmonic materials within the realm of modern nanotechnology. However, accurate in silico predictions are only available for metal clusters of just a few nanometers, while the support of modelling is required to navigate the broad landscape of components, structures and stoichiometry of plasmonic nanoalloys regardless of their size. Here we report on the accurate calculation and conceptual understanding of the optical properties of metastable alloys of both plasmonic (Au) and magnetic (Co) elements obtained through a tailored laser synthesis procedure. The model is based on the density functional theory calculation of the dielectric function with the Hubbard-corrected local density approximation, the correction for intrinsic size effects and use of classical electrodynamics. This approach is built to manage critical aspects in modelling of real samples, as spin polarization effects due to magnetic elements, short-range order variability, and size heterogeneity. The method provides accurate results also for other magnetic-plasmonic (Au-Fe) and typical plasmonic (Au-Ag) nanoalloys, thus being available for the investigation of several other nanomaterials waiting for assessment and exploitation in fundamental sectors such as quantum optics, magneto-optics, magneto-plasmonics, metamaterials, chiral catalysis and plasmon-enhanced catalysis.

4.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257510

RESUMO

Seven increasing levels of water salinity from 0.029 to 0.600 M (as NaCl) were used to investigate the dependence of pH measurement, performed using colorimetric sensor arrays (CSAs), on ionic strength. The CSAs were arrays of sensing spots prepared in the form of sol-gel-embedding Bromothymol Blue (BB) and Bromocresol Green (BCG) in a porous nitrocellulose support. The support was impregnated over the entire thickness (≈100 µm), allowing for the signal (Hue) acquisition on the opposite side to the contact with the sample solution. Three CSAs were prepared, M1, M2, and M3. M1 contained a free cationic surfactant, hexadecyltrimethylammonium p-toluenesulfonate (CTApTs), for modulating the pKa of the indicators. In M2, the surfactant dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DTSACl) was covalently bonded to the sol-gel. M3 was prepared like M2 but using a larger amount of ethanol as the solvent for the synthesis. The modulation of the CTApTs or the DTSACl concentration enabled the tuning of the pKa. In general, the pKa modulation ability decreased with the increase in salinity. The presence of a surfactant covalently linked to the backbone partially reduced the competitiveness of the anionic species, improving the results. Nevertheless, the salt effect was still present, and a correction algorithm was required. Between pH 5.00 and 12.00, this correction could be made automatically by using spots taken as references to produce sensors independent of salinity. As the salt effect is virtually absent above 0.160 M, M2 and M3 can be used for future applications in seawater.

5.
Forensic Sci Int ; 352: 111834, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806165

RESUMO

In recent years, fatal and non-fatal heroin-related overdoses have increased in northeastern Italy, and the change in potency of heroin available at street level has been identified as a prominent factor associated with acute toxicity. Two very different products, high-potency and low-potency heroin were becoming available on the street, and no clear morphological characteristics could be used to easily distinguish them. A theoretical model for predicting heroin potency from rapid analysis of cigarette filters was developed as part of an overdose prevention project. The model was derived from the analysis of real heroin samples and exploits the common presence of caffeine in heroin as an adulterant. It was tested on laboratory prepared filters, real filters used to prepare heroin injections, and other paraphernalia. The model showed strong predictive ability and was used to implement a rapid alert system to inform drug users and healthcare institutions about the potency of heroin or other psychoactive substances circulating in the area. Cigarette filters were used as standard material, but other paraphernalia were successfully tested. The developed model is a dynamic tool whose parameters can be updated according to the market characteristics, so it can be useful for laboratories involved in drug analysis and similar prevention programs.


Assuntos
Overdose de Drogas , Usuários de Drogas , Dependência de Heroína , Humanos , Heroína , Entorpecentes
6.
J Mater Chem B ; 11(36): 8775-8787, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37665632

RESUMO

Sphene is an innovative bone graft material. The aim of this study was to investigate and compare the physicochemical and biological properties of Bio-Oss® (BO) and in-lab synthesized and processed sphene granules. BO granules of 1000-2000 µm (BO-L), 250-1000 µm (BO-S) and 100-200 µm (BO-p) for derived granules, and corresponding groups of sphene granules obtained from 3D printed blocks (SB-L, SB-S, SB-p) and foams (SF-L, SF-S and SF-p) were investigated. The following analyses were conducted: morphological analysis, specific surface area and porosity, inductively coupled plasma mass spectrometry (ICP-MS), cytotoxicity assay, Alizarin staining, bone-related gene expression, osteoblast migration and proliferation assays. All pulverized granules exhibited a similar morphology and SF-S resembled natural bone. Sphene-derived granules showed absence of micro- and mesopores and a low specific surface area. ICP-MS revealed a tendency for absorption of Ca and P for all BO samples, while sphene granules demonstrated a release of Ca. No cellular cytotoxicity was detected and osteoblastic phenotype in primary cells was observed, with significantly increased values for SF-L, SF-S, BO-L and BO-p. Further investigations are needed before clinical use can be considered.


Assuntos
Bioensaio , Produtos Biológicos , Bovinos , Animais , Transplante Ósseo , Osteoblastos
7.
ACS Appl Mater Interfaces ; 15(9): 12171-12188, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36826830

RESUMO

Lanthanide-activated fluoride-based nanostructures are extremely interesting multifunctional tools for many modern applications in nanomedicine, e.g., bioimaging, sensing, drug delivery, and photodynamic therapy. Importantly, environmental-friendly preparations using a green chemistry approach, as hydrothermal synthesis route, are nowadays highly desirable to obtain colloidal nanoparticles, directly dispersible in hydrophilic media, as physiological solution. The nanomaterials under investigation are new KY3F10-based citrate-capped core@shell nanostructures activated with several lanthanide ions, namely, Er3+, Yb3+, Nd3+, and Gd3+, prepared as colloidal water dispersions. A new facile microwave-assisted synthesis has been exploited for their preparation, with significant reduction of the reaction times and a fine control of the nanoparticle size. These core@shell multifunctional architectures have been investigated for use as biocompatible and efficient contrast agents for optical, magnetic resonance imaging (MRI) and computerized tomography (CT) techniques. These multifunctional nanostructures are also efficient noninvasive optical nanothermometers. In fact, the lanthanide emission intensities have shown a relevant relative variation as a function of the temperature, in the visible and near-infrared optical ranges, efficiently exploiting ratiometric intensity methods for optical thermometry. Importantly, in contrast with other fluoride hosts, chemical dissolution of KY3F10 citrate-capped nanocrystals in aqueous environment is very limited, of paramount importance for applications in biological fluids. Furthermore, due to the strong paramagnetic properties of lanthanides (e.g., Gd3+), and X-ray absorption of both yttrium and lanthanides, the nanostructures under investigation are extremely useful for MRI and CT imaging. Biocompatibility studies of the nanomaterials have revealed very low cytotoxicity in dfferent human cell lines. All these features point to a successful use of these fluoride-based core@shell nanoarchitectures for simultaneous diagnostics and temperature sensing, ensuring an excellent biocompatibility.


Assuntos
Elementos da Série dos Lantanídeos , Nanoestruturas , Humanos , Elementos da Série dos Lantanídeos/química , Fluoretos/química , Nanomedicina , Luminescência , Nanoestruturas/química
8.
ACS Appl Mater Interfaces ; 14(49): 54635-54648, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36468946

RESUMO

Iron-nitrogen-carbon (Fe-N-C) materials emerged as one of the best non-platinum group material (non-PGM) alternatives to Pt/C catalysts for the electrochemical reduction of O2 in fuel cells. Co-doping with a secondary metal center is a possible choice to further enhance the activity toward oxygen reduction reaction (ORR). Here, classical Fe-N-C materials were co-doped with Sn as a secondary metal center. Sn-N-C according to the literature shows excellent activity, in particular in the fuel cell setup; here, the same catalyst shows a non-negligible activity in 0.5 M H2SO4 electrolyte but not as high as expected, meaning the different and uncertain nature of active sites. On the other hand, in mixed Fe, Sn-N-C catalysts, the presence of Sn improves the catalytic activity that is linked to a higher Fe-N4 site density, whereas the possible synergistic interaction of Fe-N4 and Sn-Nx found no confirmation. The presence of Fe-N4 and Sn-Nx was thoroughly determined by extended X-ray absorption fine structure and NO stripping technique; furthermore, besides the typical voltammetric technique, the catalytic activity of Fe-N-C catalyst was determined and also compared with that of the gas diffusion electrode (GDE), which allows a fast and reliable screening for possible implementation in a full cell. This paper therefore explores the effect of Sn on the formation, activity, and selectivity of Fe-N-C catalysts in both acid and alkaline media by tuning the Sn/Fe ratio in the synthetic procedure, with the ratio 1/2 showing the best activity, even higher than that of the iron-only containing sample (jk = 2.11 vs 1.83 A g-1). Pt-free materials are also tested for ORR in GDE setup in both performance and durability tests.

9.
Front Cell Dev Biol ; 10: 892069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663391

RESUMO

The redox activity of cytochrome c oxidase (COX), the terminal oxidase of the mitochondrial respiratory chain (MRC), depends on the incorporation of iron and copper into its catalytic centers. Many mitochondrial proteins have specific roles for the synthesis and delivery of metal-containing cofactors during COX biogenesis. In addition, a large set of different factors possess other molecular functions as chaperones or translocators that are also necessary for the correct maturation of these complexes. Pathological variants in genes encoding structural MRC subunits and these different assembly factors produce respiratory chain deficiency and lead to mitochondrial disease. COX deficiency in Drosophila melanogaster, induced by downregulated expression of three different assembly factors and one structural subunit, resulted in decreased copper content in the mitochondria accompanied by different degrees of increase in the cytosol. The disturbances in metal homeostasis were not limited only to copper, as some changes in the levels of cytosolic and/or mitochondrial iron, manganase and, especially, zinc were observed in several of the COX-deficient groups. The altered copper and zinc handling in the COX defective models resulted in a transcriptional response decreasing the expression of copper transporters and increasing the expression of metallothioneins. We conclude that COX deficiency is generally responsible for an altered mitochondrial and cellular homeostasis of transition metals, with variations depending on the origin of COX assembly defect.

10.
Aquat Toxicol ; 248: 106208, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35635983

RESUMO

In marine organisms, differing degree of sensitivity to ocean acidification (OA) is expected for each life stage, and disturbance at one stage can carry over into the following stage or following generation. In this study we investigated phenotypic changes of sperm and larvae of the sea urchin Paracentrotus lividus in response to different pH conditions (8.0, 7.7, 7.4) experienced by the parents during gametogenesis. In sperm from two-months exposed males, sperm motility, velocity, ATP content, ATP consumption and respiration rate were evaluated at three pH values of the activating medium (8.0, 7.7 and 7.4). Moreover, larvae from each parental group were reared at pH 8.0 and 7.7 for 20 days and larval mortality and growth were then assessed. Sperm motility and respiration rate were not affected either by exposure of males to low pH or by the post-activation pH. Sperm velocity did not differ among post-activation pH values in all sperm groups, but it decreased slower in sperm developed under acidified conditions, suggesting the presence of positive carryover effect on sperm longevity. This positive carryover effect of exposure of males to low pH values was highlighted also for the sperm ATP content, which was higher in these groups of sperm. ATP consumption rate was affected by post-activation pH with higher values at pH 8.0 in sperm from males maintained at control condition and pH 7.7 while the energy consumption appeared to be differently modulated at different experimental conditions. A negative carry over effect of OA was observed on survival of larvae from parents acclimated at pH 7.4 and additive negative effects of both parental and larval exposure to low pH can be suggested. In all groups of larvae, decreased somatic growth was observed at low rearing pH, thus larvae from parents maintained at low pH did not show an increased capability to cope with OA.


Assuntos
Paracentrotus , Poluentes Químicos da Água , Adaptação Fisiológica , Trifosfato de Adenosina , Animais , Concentração de Íons de Hidrogênio , Larva , Masculino , Oceanos e Mares , Ouriços-do-Mar , Água do Mar/química , Motilidade dos Espermatozoides , Espermatozoides , Poluentes Químicos da Água/toxicidade
11.
Environ Sci Process Impacts ; 24(6): 884-897, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35611976

RESUMO

Metals are an important atmospheric aerosol component; their impacts on health and the environment depend also on their solubility, dissolution kinetics and chemical form in which they are present in the aerosol (e.g., oxidation state, inorganic salt or oxide/hydroxide, organic complex). In this study, we investigated the impact of fog processing on the solubility and dissolution of metals in PM2.5 samples collected in an urban background site in Padova (Italy). For each sample, we determined the solubility and dissolution kinetics of 17 elements in a solution simulating fog water in the winter season in the Po Valley (pH 4.7, T 5 °C, and water content ∼0.5 g m-3). We also determined water-soluble inorganic and organic compounds having ligand properties. We used the model E-AIM IV to calculate the aerosol liquid water (ALW) content and pH, and we used the model Visual MinteQ to determine the speciation picture of the most important elements under conditions of both deliquescent aerosol (ALW and pH calculated using E-AIM IV, ambient temperature) and simulated fog. We found that the dissolution of Al, Cu, and Fe metal ions, predicted to be largely coordinated with organic compounds under fog conditions, was either immediate or considerably faster in samples collected on days with observed fog events compared with those collected on days having drier conditions. For readily soluble elements, such as As, Cd, Cr, Sr, and Zn, such an effect was not observed. Our study highlights the importance of coordination chemistry in atmospheric aerosol and fog in determining the bioavailability of particle-bound metals.


Assuntos
Poluentes Atmosféricos , Metais , Aerossóis/química , Poluentes Atmosféricos/análise , Cinética , Metais/análise , Compostos Orgânicos/química , Solubilidade , Água/análise
12.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563418

RESUMO

Limits of Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry (MS) in the study of small molecules are due to matrix-related interfering species in the low m/z range. Single-walled carbon nanohorns (SWCNH) were here evaluated as a specific surface for the rapid analysis of amino acids and lipids by Surface-Assisted Laser Desorption Ionization (SALDI). The method was optimized for detecting twenty amino acids, mainly present as cationized species, with the [M+K]+ response generally 2-time larger than the [M+Na]+ one. The [M+Na]+/[M+K]+ signals ratio was tentatively correlated with the molecular weight, dipole moment and binding affinity, to describe the amino acids' coordination ability. The SWCNH-based surface was also tested for analyzing triglycerides in olive oil samples, showing promising results in determining the percentage composition of fatty acids without any sample treatment. Results indicated that SWCNH is a promising substrate for the SALDI-MS analysis of low molecular weight compounds with different polarities, enlarging the analytical platforms for MALDI applications.


Assuntos
Carbono , Lasers , Aminoácidos , Carbono/química , Peso Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
13.
Environ Res ; 212(Pt A): 113131, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35337831

RESUMO

End-of-the-century predictions on carbon dioxide (CO2) driven ocean acidification and the continuous leakage of pesticides from inland to coastal areas are of concern for potential negative effects on marine species' early life stages which are the most vulnerable to environmental changes. Variations in seawater chemistry related to human activities may interfere with the normal development from embryo to juvenile/adult stage. However, transgenerational studies suggest that the parental generation can influence the offspring phenotype, and thus their performances, based on the environment experienced. Here we compared the transgenerational responses to a multiple stressor scenario in sea urchins (Paracentrotus lividus) that experienced different environments since their settlement: i.e., animals from a highly variable environment, such as the Venice lagoon, versus animals from a coastal area with prevailing oligotrophic conditions in the Northern Adriatic Sea. After long-term maintenance (2 and 6 months) of adult sea urchins at natural and -0.4 units reduced pH, the F1 generations were obtained. Embryos were reared under four experimental conditions: natural and -0.4 pH both in the absence and in the presence of an emerging contaminants' mixture (glyphosate and aminomethylphosphonic acid at environmentally relevant concentrations, 100 µg/L). A significant detrimental effect of both the parental and the filial pH was highlighted, affecting embryo development and growth. Nonetheless, sea urchins from both sites were able to cope with ocean acidification. The 6-months F1 response was better than that of the 2-months F1. Conversely, the F1 response of the sea urchins maintained at natural conditions did not change sensibly after more prolonged parental exposure. An additive but mild negative effect of the mixture was observed, mostly in lagoon offspring. Results suggest that long-term exposure to reduced pH leads to transgenerational acclimation but does not affect susceptibility to the tested pollutants.


Assuntos
Paracentrotus , Água do Mar , Aclimatação , Animais , Dióxido de Carbono/toxicidade , Concentração de Íons de Hidrogênio
14.
ACS Appl Mater Interfaces ; 13(36): 42693-42705, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34468127

RESUMO

Nitrogen doping has been always regarded as one of the major factors responsible for the increased catalytic activity of Fe-N-C catalysts in the oxygen reduction reaction, and recently, sulfur has emerged as a co-doping element capable of increasing the catalytic activity even more because of electronic effects, which modify the d-band center of the Fe-N-C catalysts or because of its capability to increase the Fe-Nx site density (SD). Herein, we investigate in detail the effect of sulfur doping of carbon support on the Fe-Nx site formation and on the textural properties (micro- and mesopore surface area and volume) in the resulting Fe-N-C catalysts. The Fe-N-C catalysts were prepared from mesoporous carbon with tunable sulfur doping (0-16 wt %), which was achieved by the modulation of the relative amount of sucrose/dibenzothiophene precursors. The carbon with the highest sulfur content was also activated through steam treatment at 800 °C for different durations, which allowed us to modulate the carbon pore volume and surface area (1296-1726 m2 g-1). The resulting catalysts were tested in O2-saturated 0.5 M H2SO4 electrolyte, and the site density (SD) was determined using the NO-stripping technique. Here, we demonstrate that sulfur doping has a porogenic effect increasing the microporosity of the carbon support, and it also facilitates the nitrogen fixation on the carbon support as well as the formation of Fe-Nx sites. It was found that the Fe-N-C catalytic activity [E1/2 ranges between 0.609 and 0.731 V vs reversible hydrogen electrode (RHE)] does not directly depend on sulfur content, but rather on the microporous surface and therefore any electronic effect appears not to be determinant as confirmed by X-ray photoemission spectroscopy (XPS). The graph reporting Fe-Nx SD versus sulfur content assumes a volcano-like shape, where the maximum value is obtained for a sulfur/iron ratio close to 18, i.e., a too high or too low sulfur doping has a detrimental effect on Fe-Nx formation. However, it was highlighted that the increase of Fe-Nx SD is a necessary but not sufficient condition for increasing the catalytic activity of the material, unless the textural properties are also optimized, i.e., there must be an optimized hierarchical porosity that facilitates the mass transport to the active sites.

16.
Chemosphere ; 283: 131211, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34153913

RESUMO

The Stoppani factory manufactured chromium for more than one century, dumping millions of tons of Chromite Ore Processing Residues (COPRs) over decades. The massive presence of COPRs resulted in an intense CrVI leaching and consequent contamination of percolating groundwater. The site offers a unique opportunity to follow COPRs evolution from the primary roasting process to the aged Cr-bearing mineral phases. Herein, new insights on COPRs mineralogy evolution and their role in CrVI release are provided by a dry sample preparation protocol, coupled with in-depth multi-technique characterization. Besides typical COPRs mineral assemblages, highly soluble Na2CrO4 and the first evidence of crocoite (PbCrO4) in a COPR contaminated site are revealed. Selective extraction experiments confirmed a strong reactivity for Cr-bearing minerals as confirmed by concentrations as high as 375 mg L-1 of leached CrVI. The mineralogical approach was combined with a nanotechnological solution for CrVI wastewater remediation. The application of naked colloidal maghemite (γ-Fe2O3) nanoparticles (SAMNs) on the complex industrial wastewater, led to > 90% CrVI removal, either under acidic or in-situ conditions. The present case study of a highly polluted site, ranging from mineral characterization to wastewater remediation, highlights the use of multidisciplinary approaches to cope with complex environmental issues.


Assuntos
Água Subterrânea , Resíduos Industriais , Cromo/análise , Resíduos Industriais/análise , Minerais
17.
Mar Environ Res ; 169: 105372, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34058626

RESUMO

CO2-driven ocean acidification (OA) affects many aspects of sea urchin biology. However, even in the same species, OA effects are often not univocal due to non-uniform exposure setups or different ecological history of the experimental specimens. In the present work, two groups of adult sea urchins Paracentrotus lividus from different environments (the Lagoon of Venice and a coastal area in the Northern Adriatic Sea) were exposed to OA in a long-term exposure. Animals were maintained for six months in both natural seawater (pHT 8.04) and end-of-the-century predicted condition (-0.4 units pH). Monthly, physiological (respiration rate, ammonia excretion, O:N ratio) and behavioural (righting, sheltering) endpoints were investigated. Both pH and time of exposure significantly influenced sea urchin responses, but differences between sites were highlighted, particularly in the first months. Under reduced pH, ammonia excretion increased and O:N decreased in coastal specimens. Righting and sheltering were impaired in coastal animals, whereas only righting decreased in lagoon ones. These findings suggested a higher adaptation ability in sea urchins from a more variable environment. Interestingly, as the exposure continued, animals from both sites were able to acclimate. Results revealed plasticity in the physiological and behavioural responses of sea urchins under future predicted OA conditions.


Assuntos
Paracentrotus , Água do Mar , Aclimatação , Adaptação Fisiológica , Animais , Concentração de Íons de Hidrogênio , Ouriços-do-Mar
18.
J Colloid Interface Sci ; 596: 332-341, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33839358

RESUMO

Bimetallic nanoparticles allow new and synergistic properties compared to the monometallic equivalents, often leading to unexpected results. Here we present on silver-iron nanoparticles coated with polyethylene glycol, which exhibit a high transverse relaxivity (316 ± 13 mM-1s-1, > 3 times that of the most common clinical benchmark based on iron oxide), excellent colloidal stability and biocompatibility in vivo. Ag-Fe nanoparticles are obtained through a one-step, low-cost laser-assisted synthesis, which makes surface functionalization with the desired biomolecules very easy. Besides, Ag-Fe nanoparticles show biodegradation over a few months, as indicated by incubation in the physiological environment. This is crucial for nanomaterials removal from the living organism and, in fact, in vivo biodistribution studies evidenced that Ag-Fe nanoparticles tend to be cleared from liver over a period in which the benchmark iron oxide contrast agent persisted. Therefore, the Ag-Fe NPs offer positive prospects for solving the problems of biopersistence, contrast efficiency, difficulties of synthesis and surface functionalization usually encountered in nanoparticulate contrast agents.


Assuntos
Nanopartículas , Prata , Meios de Contraste , Ferro , Imageamento por Ressonância Magnética , Polímeros , Distribuição Tecidual
19.
Chemphyschem ; 22(7): 657-664, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33559943

RESUMO

Nonequilibrium nanoalloys are metastable solids obtained at the nanoscale under nonequilibrium conditions that allow the study of kinetically frozen atoms and the discovery of new physical and chemical properties. However, the stabilization of metastable phases in the nanometric size regime is challenging and the synthetic route should be easy and sustainable, for the nonequilibrium nanoalloys to be practically available. Here we report on the one-step laser ablation synthesis in solution (LASiS) of nonequilibrium Au-Co alloy nanoparticles (NPs) and their characterization on ensembles and at the single nanoparticle level. The NPs are obtained as a polycrystalline solid solution stable in air and water, although surface cobalt atoms undergo oxidation to Co(II). Since gold is a renowned plasmonic material and metallic cobalt is ferromagnetic at room temperature, these properties are both found in the NPs. Besides, surface conjugation with thiolated molecules is possible and it was exploited to obtain colloidally stable solutions in water. Taking advantage of these features, an array of magnetic-plasmonic dots was obtained and used for surface-enhanced Raman scattering experiments. Overall, this study confirms that LASiS is an effective method for the formation of kinetically stable nonequilibrium nanoalloys and shows that Au-Co alloy NPs are appealing magnetically responsive plasmonic building blocks for several nanotechnological applications.

20.
Talanta ; 225: 122051, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592773

RESUMO

The seawater pH measurement is usually quite complicated because that matrix is characterized by a high ionic strength leading to calibration errors if NIST standards are used. For this matrix, different pH scales like the "total hydrogen ion concentration scale" (TOT) and the "seawater scale" (SWS), are defined, and suitable synthetic seawater solutions must be prepared according to standard procedures to calibrate the glass electrode. This work provides a new approach to make seawater pH measurements by using the glass electrode calibrated with the NIST standards (pHNIST) converting the pHNIST into the right TOT or SWS scales by using empirical equations derived from theoretical thermodynamic data: pHTOT=pHNIST+0.10383+4.33⋅10-5TS+3.633⋅10-5T2-4.921⋅10-5S2, and pHSWS=pHNIST+0.097733+4.1059⋅10-5TS+3.5437⋅10-5T2-4.941⋅10-5S2, for the TOT and SWS scales, respectively. These equations are functions of two simple experimental parameters, namely, T = temperature (°C) and S = salinity (PSU, (g/L), Practical Salinity Units). These equations were experimentally validated and the uncertainty of pHTOT and pHSWS was demonstrated to have no statistical difference with the corresponding values obtained following the standard operative procedure (SOP) using commercially unavailable seawater-like buffers. The proposed method has therefore the same performances and it is largely preferable as it avoids long and tedious procedures of the synthetic seawater preparations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...