Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1100967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949945

RESUMO

Aicardi-Goutières syndrome (AGS1-9) is a genetically determined encephalopathy that falls under the type I interferonopathy disease class, characterized by excessive type I interferon (IFN-I) activity, coupled with upregulation of IFN-stimulated genes (ISGs), which can be explained by the vital role these proteins play in self-non-self-discrimination. To date, few mouse models fully replicate the vast clinical phenotypes observed in AGS patients. Therefore, we investigated the use of zebrafish as an alternative species for generating a clinically relevant model of AGS. Using CRISPR-cas9 technology, we generated a stable mutant zebrafish line recapitulating AGS5, which arises from recessive mutations in SAMHD1. The resulting homozygous mutant zebrafish larvae possess a number of neurological phenotypes, exemplified by variable, but increased expression of several ISGs in the head region, a significant increase in brain cell death, microcephaly and locomotion deficits. A link between IFN-I signaling and cholesterol biosynthesis has been highlighted by others, but not previously implicated in the type I interferonopathies. Through assessment of neurovascular integrity and qPCR analysis we identified a significant dysregulation of cholesterol biosynthesis in the zebrafish model. Furthermore, dysregulation of cholesterol biosynthesis gene expression was also observed through RNA sequencing analysis of AGS patient whole blood. From this novel finding, we hypothesize that cholesterol dysregulation may play a role in AGS disease pathophysiology. Further experimentation will lend critical insight into the molecular pathophysiology of AGS and the potential links involving aberrant type I IFN signaling and cholesterol dysregulation.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Interferon Tipo I , Malformações do Sistema Nervoso , Animais , Camundongos , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Cell Rep ; 39(12): 110995, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732120

RESUMO

Dysregulated cellular metabolism is a cancer hallmark for which few druggable oncoprotein targets have been identified. Increased fatty acid (FA) acquisition allows cancer cells to meet their heightened membrane biogenesis, bioenergy, and signaling needs. Excess FAs are toxic to non-transformed cells but surprisingly not to cancer cells. Molecules underlying this cancer adaptation may provide alternative drug targets. Here, we demonstrate that diacylglycerol O-acyltransferase 1 (DGAT1), an enzyme integral to triacylglyceride synthesis and lipid droplet formation, is frequently up-regulated in melanoma, allowing melanoma cells to tolerate excess FA. DGAT1 over-expression alone transforms p53-mutant zebrafish melanocytes and co-operates with oncogenic BRAF or NRAS for more rapid melanoma formation. Antagonism of DGAT1 induces oxidative stress in melanoma cells, which adapt by up-regulating cellular reactive oxygen species defenses. We show that inhibiting both DGAT1 and superoxide dismutase 1 profoundly suppress tumor growth through eliciting intolerable oxidative stress.


Assuntos
Diacilglicerol O-Aciltransferase , Melanoma , Animais , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Proteínas Oncogênicas/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Triglicerídeos , Peixe-Zebra/metabolismo
3.
Genome Res ; 32(5): 956-967, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332098

RESUMO

RNA homodimerization is important for various physiological processes, including the assembly of membraneless organelles, RNA subcellular localization, and packaging of viral genomes. However, understanding RNA dimerization has been hampered by the lack of systematic in vivo detection methods. Here, we show that CLASH, PARIS, and other RNA proximity ligation methods detect RNA homodimers transcriptome-wide as "overlapping" chimeric reads that contain more than one copy of the same sequence. Analyzing published proximity ligation data sets, we show that RNA:RNA homodimers mediated by direct base-pairing are rare across the human transcriptome, but highly enriched in specific transcripts, including U8 snoRNA, U2 snRNA, and a subset of tRNAs. Mutations in the homodimerization domain of U8 snoRNA impede dimerization in vitro and disrupt zebrafish development in vivo, suggesting an evolutionarily conserved role of this domain. Analysis of virus-infected cells reveals homodimerization of SARS-CoV-2 and Zika genomes, mediated by specific palindromic sequences located within protein-coding regions of N gene in SARS-CoV-2 and NS2A gene in Zika. We speculate that regions of viral genomes involved in homodimerization may constitute effective targets for antiviral therapies.


Assuntos
COVID-19 , Infecção por Zika virus , Zika virus , Animais , Sequência de Bases , RNA Nucleolar Pequeno/genética , RNA Viral/genética , SARS-CoV-2/genética , Peixe-Zebra/genética , Zika virus/genética , Infecção por Zika virus/genética
4.
Methods Mol Biol ; 2262: 411-422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977492

RESUMO

Hyper-activation of RAS signaling pathways causes cancer, including melanoma, and RAS signaling pathways have been successfully targeted using drugs for patient benefit. The available drugs alone cannot cure cancer, however, and so investigation continues into RAS signaling pathways, with the goal of identifying further actionable targets. The zebrafish can be used to model human malignancies, and genetic modification of zebrafish to incorporate selective disease-associated genetic alterations is practicable. The following article describes the methods we are using to genetically modify zebrafish in order to dissect oncogenic RAS signaling in melanoma development.


Assuntos
Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Melanoma/patologia , Mutação , Transgenes/genética , Proteínas ras/metabolismo , Animais , Animais Geneticamente Modificados , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Humanos , Melanoma/genética , Melanoma/metabolismo , Peixe-Zebra , Proteínas ras/genética
5.
Mol Neurobiol ; 58(5): 2061-2074, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33415684

RESUMO

Amyotrophic lateral sclerosis (ALS) is a form of motor neuron disease (MND) that is characterized by the progressive loss of motor neurons within the spinal cord, brainstem, and motor cortex. Although ALS clinically manifests as a heterogeneous disease, with varying disease onset and survival, a unifying feature is the presence of ubiquitinated cytoplasmic protein inclusion aggregates containing TDP-43. However, the precise mechanisms linking protein inclusions and aggregation to neuronal loss are currently poorly understood. Bimolecular fluorescence complementation (BiFC) takes advantage of the association of fluorophore fragments (non-fluorescent on their own) that are attached to an aggregation-prone protein of interest. Interaction of the proteins of interest allows for the fluorescent reporter protein to fold into its native state and emit a fluorescent signal. Here, we combined the power of BiFC with the advantages of the zebrafish system to validate, optimize, and visualize the formation of ALS-linked aggregates in real time in a vertebrate model. We further provide in vivo validation of the selectivity of this technique and demonstrate reduced spontaneous self-assembly of the non-fluorescent fragments in vivo by introducing a fluorophore mutation. Additionally, we report preliminary findings on the dynamic aggregation of the ALS-linked hallmark proteins Fus and TDP-43 in their corresponding nuclear and cytoplasmic compartments using BiFC. Overall, our data demonstrates the suitability of this BiFC approach to study and characterize ALS-linked aggregate formation in vivo. Importantly, the same principle can be applied in the context of other neurodegenerative diseases and has therefore critical implications to advance our understanding of pathologies that underlie aberrant protein aggregation.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Córtex Motor/metabolismo , Neurônios Motores/metabolismo , Agregação Patológica de Proteínas/metabolismo , Medula Espinal/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Fluorescência , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Córtex Motor/patologia , Neurônios Motores/patologia , Agregação Patológica de Proteínas/patologia , Medula Espinal/patologia , Peixe-Zebra
6.
Nat Genet ; 52(12): 1364-1372, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33230297

RESUMO

Inappropriate stimulation or defective negative regulation of the type I interferon response can lead to autoinflammation. In genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome, we identified biallelic mutations in LSM11 and RNU7-1, which encode components of the replication-dependent histone pre-mRNA-processing complex. Mutations were associated with the misprocessing of canonical histone transcripts and a disturbance of linker histone stoichiometry. Additionally, we observed an altered distribution of nuclear cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and enhanced interferon signaling mediated by the cGAS-stimulator of interferon genes (STING) pathway in patient-derived fibroblasts. Finally, we established that chromatin without linker histone stimulates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) production in vitro more efficiently. We conclude that nuclear histones, as key constituents of chromatin, are essential in suppressing the immunogenicity of self-DNA.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Interferon Tipo I/biossíntese , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U7/genética , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Linhagem Celular , DNA/imunologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Células HCT116 , Células HEK293 , Doenças Hereditárias Autoinflamatórias/genética , Doenças Hereditárias Autoinflamatórias/imunologia , Humanos , Proteínas de Membrana/metabolismo , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Nucleotídeos Cíclicos/biossíntese , Nucleotidiltransferases/metabolismo
7.
J Immunol ; 205(4): 994-1008, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32641385

RESUMO

Mucosal surfaces such as fish gills interface between the organism and the external environment and as such are major sites of foreign Ag encounter. In the gills, the balance between inflammatory responses to waterborne pathogens and regulatory responses toward commensal microbes is critical for effective barrier function and overall fish health. In mammals, IL-4 and IL-13 in concert with IL-10 are essential for balancing immune responses to pathogens and suppressing inflammation. Although considerable progress has been made in the field of fish immunology in recent years, whether the fish counterparts of these key mammalian cytokines perform similar roles is still an open question. In this study, we have generated IL-4/13A and IL-4/13B mutant zebrafish (Danio rerio) and, together with an existing IL-10 mutant line, characterized the consequences of loss of function of these cytokines. We demonstrate that IL-4/13A and IL-4/13B are required for the maintenance of a Th2-like phenotype in the gills and the suppression of type 1 immune responses. As in mammals, IL-10 appears to have a more striking anti-inflammatory function than IL-4-like cytokines and is essential for gill homeostasis. Thus, both IL-4/13 and IL-10 paralogs in zebrafish exhibit aspects of conserved function with their mammalian counterparts.


Assuntos
Proteínas de Peixes/imunologia , Brânquias/imunologia , Homeostase/imunologia , Inflamação/imunologia , Interleucina-10/imunologia , Interleucina-4/imunologia , Peixe-Zebra/imunologia , Animais , Imunidade/imunologia , Interleucina-13/imunologia , Mamíferos/imunologia
8.
Am J Hum Genet ; 106(5): 694-706, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32359472

RESUMO

How mutations in the non-coding U8 snoRNA cause the neurological disorder leukoencephalopathy with calcifications and cysts (LCC) is poorly understood. Here, we report the generation of a mutant U8 animal model for interrogating LCC-associated pathology. Mutant U8 zebrafish exhibit defective central nervous system development, a disturbance of ribosomal RNA (rRNA) biogenesis and tp53 activation, which monitors ribosome biogenesis. Further, we demonstrate that fibroblasts from individuals with LCC are defective in rRNA processing. Human precursor-U8 (pre-U8) containing a 3' extension rescued mutant U8 zebrafish, and this result indicates conserved biological function. Analysis of LCC-associated U8 mutations in zebrafish revealed that one null and one functional allele contribute to LCC. We show that mutations in three nucleotides at the 5' end of pre-U8 alter the processing of the 3' extension, and we identify a previously unknown base-pairing interaction between the 5' end and the 3' extension of human pre-U8. Indeed, LCC-associated mutations in any one of seven nucleotides in the 5' end and 3' extension alter the processing of pre-U8, and these mutations are present on a single allele in almost all individuals with LCC identified to date. Given genetic data indicating that bi-allelic null U8 alleles are likely incompatible with human development, and that LCC is not caused by haploinsufficiency, the identification of hypomorphic misprocessing mutations that mediate viable embryogenesis furthers our understanding of LCC molecular pathology and cerebral vascular homeostasis.


Assuntos
Alelos , Calcinose/genética , Cistos do Sistema Nervoso Central/genética , Cistos/genética , Leucoencefalopatias/genética , Mutação , RNA Nucleolar Pequeno/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Calcinose/patologia , Cistos do Sistema Nervoso Central/patologia , Sequência Conservada , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Humanos , Leucoencefalopatias/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Pigment Cell Melanoma Res ; 33(1): 74-85, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31323160

RESUMO

Melanoma is the deadliest form of skin cancer; a primary driver of this high level of morbidity is the propensity of melanoma cells to metastasize. When malignant tumours develop distant metastatic lesions the new local tissue niche is known to impact on the biology of the cancer cells. However, little is known about how different metastatic tissue sites impact on frontline targeted therapies. Intriguingly, melanoma bone lesions have significantly lower response to BRAF or MEK inhibitor therapies. Here, we have investigated how the cellular niche of the bone can support melanoma cells by stimulating growth and survival via paracrine signalling between osteoblasts and cancer cells. Melanoma cells can enhance the differentiation of osteoblasts leading to increased production of secreted ligands, including RANKL. Differentiated osteoblasts in turn can support melanoma cell proliferation and survival via the secretion of RANKL that elevates the levels of the transcription factor MITF, even in the presence of BRAF inhibitor. By blocking RANKL signalling, either via neutralizing antibodies, genetic alterations or the RANKL receptor inhibitor SPD304, the survival advantage provided by osteoblasts could be overcome.


Assuntos
Melanoma/patologia , Osteoblastos/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Ligante RANK/metabolismo , Transdução de Sinais
10.
Cancer Res ; 79(9): 2136-2151, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30862716

RESUMO

Alterations in lipid metabolism in cancer cells impact cell structure, signaling, and energy metabolism, making lipid metabolism a potential diagnostic marker and therapeutic target. In this study, we combined PET, desorption electrospray ionization-mass spectrometry (DESI-MS), nonimaging MS, and transcriptomic analyses to interrogate changes in lipid metabolism in a transgenic zebrafish model of oncogenic RAS-driven melanocyte neoplasia progression. Exogenous fatty acid uptake was detected in melanoma tumor nodules by PET using the palmitic acid surrogate tracer 14(R,S)-18F-fluoro-6-thia-heptadecanoic acid ([18F]-FTHA), consistent with upregulation of genes associated with fatty acid uptake found through microarray analysis. DESI-MS imaging revealed that FTHA uptake in tumors was heterogeneous. Transcriptome and lipidome analyses further highlighted dysregulation of glycerophospholipid pathways in melanoma tumor nodules, including increased abundance of phosphatidyl ethanolamine and phosphatidyl choline species, corroborated by DESI-MS, which again revealed heterogeneous phospholipid composition in tumors. Overexpression of the gene encoding lipoprotein lipase (LPL), which was upregulated in zebrafish melanocyte tumor nodules and expressed in the majority of human melanomas, accelerated progression of oncogenic RAS-driven melanocyte neoplasia in zebrafish. Depletion or antagonism of LPL suppressed human melanoma cell growth; this required simultaneous fatty acid synthase (FASN) inhibition when FASN expression was also elevated. Collectively, our findings implicate fatty acid acquisition as a possible therapeutic target in melanoma, and the methods we developed for monitoring fatty acid uptake have potential for diagnosis, patient stratification, and monitoring pharmacologic response. SIGNIFICANCE: These findings demonstrate the translational potential of monitoring fatty acid uptake and identify lipoprotein lipase as a potential therapeutic target in melanoma.


Assuntos
Ácidos Graxos/metabolismo , Glicerofosfolipídeos/metabolismo , Melanócitos/patologia , Melanoma/patologia , Peixe-Zebra/metabolismo , Animais , Metabolismo Energético , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Melanócitos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Metabolômica , Fator de Transcrição Associado à Microftalmia/genética , Transcriptoma , Células Tumorais Cultivadas , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas ras/genética , Proteínas ras/metabolismo
11.
F1000Res ; 7: 1617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30473780

RESUMO

Intracerebral haemorrhage (ICH) is a devastating condition with limited treatment options, and current understanding of pathophysiology is incomplete. Spontaneous cerebral bleeding is a characteristic of the human condition that has proven difficult to recapitulate in existing pre-clinical rodent models. Zebrafish larvae are frequently used as vertebrate disease models and are associated with several advantages, including high fecundity, optical translucency and non-protected status prior to 5 days post-fertilisation. Furthermore, other groups have shown that zebrafish larvae can exhibit spontaneous ICH. The aim of this study was to investigate whether such models can be utilised to study the pathological consequences of bleeding in the brain, in the context of pre-clinical ICH research. Here, we compared existing genetic (bubblehead) and chemically inducible (atorvastatin) zebrafish larval models of spontaneous ICH and studied the subsequent disease processes. Through live, non-invasive imaging of transgenic fluorescent reporter lines and behavioural assessment we quantified brain injury, locomotor function and neuroinflammation following ICH. We show that ICH in both zebrafish larval models is comparable in timing, frequency and location. ICH results in increased brain cell death and a persistent locomotor deficit. Additionally, in haemorrhaged larvae we observed a significant increase in macrophage recruitment to the site of injury. Live in vivo imaging allowed us to track active macrophage-based phagocytosis of dying brain cells 24 hours after haemorrhage. Morphological analyses and quantification indicated that an increase in overall macrophage activation occurs in the haemorrhaged brain. Our study shows that in zebrafish larvae, bleeding in the brain induces quantifiable phenotypic outcomes that mimic key features of human ICH. We hope that this methodology will enable the pre-clinical ICH community to adopt the zebrafish larval model as an alternative to rodents, supporting future high throughput drug screening and as a complementary approach to elucidating crucial mechanisms associated with ICH pathophysiology.

12.
Nat Commun ; 9(1): 3595, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185827

RESUMO

RAS GTPases are frequently mutated in human cancer. H- and NRAS isoforms are distributed over both plasma-membrane and endomembranes, including the Golgi complex, but how this organizational context contributes to cellular transformation is unknown. Here we show that RAS at the Golgi is selectively activated by apoptogenic stimuli and antagonizes cell survival by suppressing ERK activity through the induction of PTPRκ, which targets CRAF for dephosphorylation. Consistently, in contrast to what occurs at the plasma-membrane, RAS at the Golgi cannot induce melanoma in zebrafish. Inactivation of PTPRκ, which occurs frequently in human melanoma, often coincident with TP53 inactivation, accelerates RAS-ERK pathway-driven melanomagenesis in zebrafish. Likewise, tp53 disruption in zebrafish facilitates oncogenesis driven by RAS from the Golgi complex. Thus, RAS oncogenic potential is strictly dependent on its sublocalization, with Golgi complex-located RAS antagonizing tumor development.


Assuntos
Transformação Celular Neoplásica/patologia , Complexo de Golgi/metabolismo , Melanoma/patologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Células NIH 3T3 , RNA Interferente Pequeno/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
13.
Acta Neuropathol ; 136(3): 445-459, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29943193

RESUMO

Transactivating DNA-binding protein-43 (TDP-43) deposits represent a typical finding in almost all ALS patients, more than half of FTLD patients and patients with several other neurodegenerative disorders. It appears that perturbation of nucleo-cytoplasmic transport is an important event in these conditions but the mechanistic role and the fate of TDP-43 during neuronal degeneration remain elusive. We have developed an experimental system for visualising the perturbed nucleocytoplasmic transport of neuronal TDP-43 at the single-cell level in vivo using zebrafish spinal cord. This approach enabled us to image TDP-43-expressing motor neurons before and after experimental initiation of cell death. We report the formation of mobile TDP-43 deposits within degenerating motor neurons, which are normally phagocytosed by microglia. However, when microglial cells were depleted, injury-induced motor neuron degeneration follows a characteristic process that includes TDP-43 redistribution into the cytoplasm, axon and extracellular space. This is the first demonstration of perturbed TDP-43 nucleocytoplasmic transport in vivo, and suggests that impairment in microglial phagocytosis of dying neurons may contribute towards the formation of pathological TDP-43 presentations in ALS and FTLD.


Assuntos
Axônios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Microglia/metabolismo , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Axônios/patologia , Microglia/patologia , Neurônios Motores/patologia , Degeneração Neural/patologia , Transporte Proteico , Peixe-Zebra
14.
Cell Mol Life Sci ; 75(23): 4269-4285, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29468257

RESUMO

Aurora kinase B (AurkB) is a serine/threonine protein kinase with a well-characterised role in orchestrating cell division and cytokinesis, and is prominently expressed in healthy proliferating and cancerous cells. However, the role of AurkB in differentiated and non-dividing cells has not been extensively explored. Previously, we have described a significant upregulation of AurkB expression in cultured cortical neurons following an experimental axonal transection. This is somewhat surprising, as AurkB expression is generally associated only with dividing cells Frangini et al. (Mol Cell 51:647-661, 2013); Hegarat et al. (J Cell Biol 195:1103-1113, 2011); Lu et al. (J Biol Chem 283:31785-31790, 2008); Trakala et al. (Cell Cycle 12:1030-1041, 2014). Herein, we present the first description of a role for AurkB in terminally differentiated neurons. AurkB was prominently expressed within post-mitotic neurons of the zebrafish brain and spinal cord. The expression of AurkB varied during the development of the zebrafish spinal motor neurons. Utilising pharmacological and genetic manipulation to impair AurkB activity resulted in truncation and aberrant motor axon morphology, while overexpression of AurkB resulted in extended axonal outgrowth. Further pharmacological inhibition of AurkB activity in regenerating axons delayed their recovery following UV laser-mediated injury. Collectively, these results suggest a hitherto unreported role of AurkB in regulating neuronal development and axonal outgrowth.


Assuntos
Aurora Quinase B/metabolismo , Axônios/fisiologia , Neurônios Motores/metabolismo , Regeneração Nervosa/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Organofosfatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Medula Espinal/citologia , Medula Espinal/embriologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
15.
Nat Commun ; 8: 14911, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28382966

RESUMO

In response to infection and injury, the neutrophil population rapidly expands and then quickly re-establishes the basal state when inflammation resolves. The exact pathways governing neutrophil/macrophage lineage outputs from a common granulocyte-macrophage progenitor are still not completely understood. From a forward genetic screen in zebrafish, we identify the transcriptional repressor, ZBTB11, as critical for basal and emergency granulopoiesis. ZBTB11 sits in a pathway directly downstream of master myeloid regulators including PU.1, and TP53 is one direct ZBTB11 transcriptional target. TP53 repression is dependent on ZBTB11 cys116, which is a functionally critical, metal ion-coordinating residue within a novel viral integrase-like zinc finger domain. To our knowledge, this is the first description of a function for this domain in a cellular protein. We demonstrate that the PU.1-ZBTB11-TP53 pathway is conserved from fish to mammals. Finally, Zbtb11 mutant rescue experiments point to a ZBTB11-regulated TP53 requirement in development of other organs.


Assuntos
Leucopoese/genética , Neutrófilos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/genética , Transativadores/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Bases de Dados de Proteínas , Transdução de Sinais , Peixe-Zebra , Dedos de Zinco
16.
Zebrafish ; 14(1): 69-72, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27631880

RESUMO

Currently there is a lack in fundamental understanding of disease progression of most neurodegenerative diseases, and, therefore, treatments and preventative measures are limited. Consequently, there is a great need for adaptable, yet robust model systems to both investigate elementary disease mechanisms and discover effective therapeutics. We have generated a Tol2 Gateway-compatible toolbox to study neurodegenerative disorders in zebrafish, which includes promoters for astrocytes, microglia and motor neurons, multiple fluorophores, and compatibility for the introduction of genes of interest or disease-linked genes. This toolbox will advance the rapid and flexible generation of zebrafish models to discover the biology of the nervous system and the disease processes that lead to neurodegeneration.


Assuntos
Animais Geneticamente Modificados/genética , Elementos de DNA Transponíveis , Técnicas de Transferência de Genes , Doenças do Sistema Nervoso/genética , Doenças Neurodegenerativas/genética , Peixe-Zebra/genética , Animais , DNA Recombinante/genética , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Regiões Promotoras Genéticas , Recombinação Genética , Peixe-Zebra/metabolismo
17.
Biol Open ; 5(3): 359-66, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26892237

RESUMO

Here we genetically characterise pelvic finless, a naturally occurring model of hindlimb loss in zebrafish that lacks pelvic fin structures, which are homologous to tetrapod hindlimbs, but displays no other abnormalities. Using a hybrid positional cloning and next generation sequencing approach, we identified mutations in the nuclear localisation signal (NLS) of T-box transcription factor 4 (Tbx4) that impair nuclear localisation of the protein, resulting in altered gene expression patterns during pelvic fin development and the failure of pelvic fin development. Using a TALEN-induced tbx4 knockout allele we confirm that mutations within the Tbx4 NLS (A78V; G79A) are sufficient to disrupt pelvic fin development. By combining histological, genetic, and cellular approaches we show that the hindlimb initiation gene tbx4 has an evolutionarily conserved, essential role in pelvic fin development. In addition, our novel viable model of hindlimb deficiency is likely to facilitate the elucidation of the detailed molecular mechanisms through which Tbx4 functions during pelvic fin and hindlimb development.

18.
Front Cell Neurosci ; 9: 321, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379496

RESUMO

Microglia are specialized phagocytes in the vertebrate central nervous system (CNS). As the resident immune cells of the CNS they play an important role in the removal of dying neurons during both development and in several neuronal pathologies. Microglia have been shown to prevent the diffusion of damaging degradation products of dying neurons by engulfment and ingestion. Here we describe a live imaging approach that uses UV laser ablation to selectively stress and kill spinal neurons and visualize the clearance of neuronal remnants by microglia in the zebrafish spinal cord. In vivo imaging confirmed the motile nature of microglia within the uninjured spinal cord. However, selective neuronal ablation triggered rapid activation of microglia, leading to phagocytic uptake of neuronal debris by microglia within 20-30 min. This process of microglial engulfment is highly dynamic, involving the extension of processes toward the lesion site and consequently the ingestion of the dying neuron. 3D rendering analysis of time-lapse recordings revealed the formation of phagosome-like structures in the activated microglia located at the site of neuronal ablation. This real-time representation of microglial phagocytosis in the living zebrafish spinal cord provides novel opportunities to study the mechanisms of microglia-mediated neuronal clearance.

19.
PLoS One ; 9(6): e90572, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24912067

RESUMO

FUS mutations can occur in familial amyotrophic lateral sclerosis (fALS), a neurodegenerative disease with cytoplasmic FUS inclusion bodies in motor neurons. To investigate FUS pathology, we generated transgenic zebrafish expressing GFP-tagged wild-type or fALS (R521C) human FUS. Cell cultures were made from these zebrafish and the subcellular localization of human FUS and the generation of stress granule (SG) inclusions examined in different cell types, including differentiated motor neurons. We demonstrate that mutant FUS is mislocalized from the nucleus to the cytosol to a similar extent in motor neurons and all other cell types. Both wild-type and R521C FUS localized to SGs in zebrafish cells, demonstrating an intrinsic ability of human FUS to accumulate in SGs irrespective of the presence of disease-associated mutations or specific cell type. However, elevation in relative cytosolic to nuclear FUS by the R521C mutation led to a significant increase in SG assembly and persistence within a sub population of vulnerable cells, although these cells were not selectively motor neurons.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Citosol/metabolismo , Mutação , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Humanos , Neurônios Motores/citologia , Transporte Proteico/genética
20.
PLoS Genet ; 9(2): e1003279, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23408911

RESUMO

Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (tti(s450)), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In tti(s450), the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in tti(s450) larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in tti(s450) larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death.


Assuntos
Autofagia/genética , Proteínas de Ciclo Celular , Ribossomos , Serina-Treonina Quinases TOR , Proteína Supressora de Tumor p53 , Proteínas de Peixe-Zebra , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular , Genes Letais/genética , Mutação , Biossíntese de Proteínas/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...