Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38623980

RESUMO

AIM AND OBJECTIVE: The aim of this study was to prepare polyvinyl alcohol/acrylic acid (PVA/AA) hydrogels for the controlled release of diclofenac sodium and to develop PVA/AA hydrogels as controlled release carriers to overcome not only the side effects of diclofenac sodium but also sustain its release for an extended period. BACKGROUND: Diclofenac sodium is employed for relieving pain and fever. The half-life of diclofenac sodium is very short (1-2 h). Hence, multiple intakes of diclofenac sodium are required to maintain a constant pharmacological action. Multiple GI adverse effects are produced as a result of diclofenac sodium intake. METHOD: A free radical polymerization technique was used for crosslinking PVA with AA in the presence of APS. EGDMA was used as a cross-linker. FTIR and XRD confirmed the preparation and loading of the drug by prepared hydrogels. An increase in the thermal stability of PVA was shown by TGA and DSC analysis. Surface morphology was investigated by SEM. Similarly, water penetration and drug loading were demonstrated by porosity and drug loading studies. The pH-sensitive nature of PVA/AA hydrogels was investigated at different pH values by swelling and drug release studies. RESULTS: The development and drug loading of PVA/AA hydrogels were confirmed by FTIR and XRD analysis. TGA and DSC indicated high thermal stability of prepared hydrogels as compared to unreacted PVA. SEM indicated a hard and compact network of developed hydrogels. The swelling and drug release studies indicated maximum swelling and drug release at high pH as compared to low pH values, indicating the pH-sensitive nature of prepared hydrogels. Moreover, we demonstrated that drug release was sustained for a prolonged time in a controlled pattern by prepared hydrogels by comparing the drug release of the developed hydrogels with the commercial product Cataflam. CONCLUSION: The results indicated that prepared PVA/AA hydrogels can be used as an alternative approach for the controlled delivery of diclofenac sodium.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38015258

RESUMO

Cytarabine, an antimetabolite antineoplastic agent, has been utilized to treat various cancers. However, because of its short half-life, low stability, and limited bioavailability, achieving an optimal plasma concentration requires continuous intravenous administration, which can lead to toxicity in normal cells and tissues. Addressing these limitations is crucial to optimize the therapeutic efficacy of cytarabine while minimizing its adverse effects. The use of novel drug delivery systems, such as polymer-based nanocarriers have emerged as promising vehicles for targeted drug delivery due to their unique properties, including high stability, biocompatibility, and tunable release kinetics. In this review, we examine the application of various polymer-based nanocarriers, including polymeric nanoparticles, polymeric micelles, dendrimers, polymer-drug conjugates, and nano-hydrogels, for the delivery of cytarabine. The article highlights the limitations of conventional cytarabine administration which often lead to suboptimal therapeutic outcomes and systemic toxicity. The rationale for using polymer-based nanocarriers is discussed, highlighting their ability to overcome challenges by providing controlled drug release, improved stability, and enhanced targeting capabilities. In summary, this review offers a valuable resource for drug delivery scientists by providing insights into the design principles, formulation strategies, and potential applications of polymer-based nanocarriers that can enhance the therapeutic efficacy of cytarabine.

3.
World J Microbiol Biotechnol ; 39(12): 345, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843704

RESUMO

Macroalgae has the potential to be a precious resource in food, pharmaceutical, and nutraceutical industries. Therefore, the present study was carried out to identify and quantify the phyco-chemicals and to assess the nutritional profile, antimicrobial, antioxidant, and anti-diabetic properties of Nitella hyalina extracts. Nutritional composition revealed0.05 ± 2.40% ash content, followed by crude protein (24.66 ± 0.95%), crude fat (17.66 ± 1.42%), crude fiber (2.17 ± 0.91%), moisture content (15.46 ± 0.48%) and calculated energy value (173.50 ± 2.90 Kcal/100 g). 23 compounds were identified through GC-MS analysis in ethyl acetate extract, with primary compounds being Palmitic acid, methyl ester, (Z)-9-Hexadecenoic acid, methyl ester, and Methyl tetra decanoate. Whereas 15 compounds were identified in n-butanol extract, with the major compounds being Tetra decanoic acid, 9-hexadecanoic acid, Methyl pentopyranoside, and undecane. FT-IR spectroscopy confirmed the presence of alcoholic phenol, saturated aliphatic compounds, lipids, carboxylic acid, carbonyl, aromatic components, amine, alkyl halides, alkene, and halogen compounds. Moreover, n-butanol contains 1.663 ± 0.768 mg GAE/g, of total phenolic contents (TPC,) and 2.050 ± 0.143 QE/g of total flavonoid contents (TFC), followed by ethyl acetate extract, i.e. 1.043 ± 0.961 mg GAE/g and 1.730 ± 0.311 mg QE/g respectively. Anti-radical scavenging effect in a range of 34.55-46.35% and 35.39-41.79% was measured for n-butanol and ethyl acetate extracts, respectively. Antimicrobial results declared that n-butanol extract had the highest growth inhibitory effect, followed by ethyl acetate extract. Pseudomonas aeruginosa was reported to be the most susceptible strain, followed by Staphylococcus aureus and Escherichia coli, while Candida albicans showed the least inhibition at all concentrations. In-vivo hypoglycemic study revealed that both extracts exhibited dose-dependent activity. Significant hypoglycemic activity was observed at a dose of 300 mg/kg- 1 after 6 h i.e. 241.50 ± 2.88, followed by doses of 200 and 100 mg/kg- 1 (245.17 ± 3.43 and 250.67 ± 7.45, respectively) for n-butanol extract. In conclusion, the macroalgae demonstrated potency concerning antioxidant, antimicrobial, and hypoglycemic properties.


Assuntos
Anti-Infecciosos , Nitella , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Hipoglicemiantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , 1-Butanol , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Ésteres
4.
Gels ; 9(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37504446

RESUMO

A hydrogel topical patch of neomycin was developed by using sodium alginate (SA) and hydroxyethylcellulose (HEC) as polymers. Free radical polymerization in an aqueous medium was initiated by using acrylic acid (AA) and N,N'-methylenebisacrylamide (MBA). Prepared hydrogels were characterized for pH sensitivity and sol-gel analysis. In addition, the effect of reactant contents on the developed formulation was evaluated by swelling behavior. SEM assay showed the rough structure of the hydrogel-based polymeric matrix, which directly enhances the ability to uptake fluid. FTIR spectra revealed the formation of a new polymeric network between reactant contents. TGA and DSC verified that fabricated polymeric patches were more thermodynamically stable than pure components. Gel fractions increased with increases in polymer, monomer, and cross-linker contents. The swelling study showed the pH-dependent swelling behavior of patches at pH 5.5, 6.5, and 7.4. The release pattern of the drug followed zero-order kinetics, with diffusion-controlled drug release patterns according to the Korsmeyer-Peppas (KP) model. Ex vivo studies across excised rabbit skin verified the drug retention in the skin layers. The hydrogel patch effectively healed the wounds produced on the rabbit skin, whereas the formulation showed no sign of irritation on intact skin. Therefore, neomycin hydrogel patches can be a potential candidate for controlled delivery for efficient wound healing.

5.
Front Bioeng Biotechnol ; 11: 1190322, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304144

RESUMO

Introduction: The objective of current project was to formulate a system for controlled delivery of Tramadol HCl (TRD), an opioid analgesic used in the treatment of moderate to severe pain. Methods: For this purpose, a pH responsive AvT-co-poly hydrogel network was formulated through free radical polymerization by incorporating natural polymers i.e., aloe vera gel and tamarind gum, monomer and crosslinker. Formulated hydrogels were loaded with Tramadol HCl (TRD) and evaluated for percent drug loading, sol-gel fraction, dynamic and equilibrium swelling, morphological characteristics, structural features and in-vitro release of Tramadol HCl. Results and Discussions: Hydrogels were proved to be pH sensitive as remarkable dynamic swelling response ranging within 2.94g/g-10.81g/g was noticed at pH 7.4 as compared to pH 1.2. Percent drug loading was in the range of 70.28%-90.64% for all formulations. Thermal stability and compatibility of hydrogel components were validated by DSC analysis and FTIR spectroscopy. Controlled release pattern of Tramadol HCl from the polymeric network was confirmed as maximum release of 92.22% was observed for over a period of 24 hours at pH 7.4. Moreover, oral toxicity studies were also conducted in rabbits to investigate the safety of hydrogels. No evidence of any toxicity, lesions and degeneration was reported, confirming the biocompatibility and safety of grafted system.

6.
Mar Drugs ; 21(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37233467

RESUMO

Seaweed has been known to possess beneficial effects forhuman health due to the presence of functional bioactive components. The n-butanol and ethyl acetate extracts of Dictyota dichotoma showed ash (31.78%), crude fat (18.93%), crude protein (14.5%), and carbohydrate (12.35%) contents. About 19 compounds were identified in the n-butanol extract, primarily undecane, cetylic acid, hexadecenoic acid, Z-11-, lageracetal, dodecane, and tridecane, whereas 25 compounds were identified in the ethyl acetate extract, mainly tetradecanoic, hexadecenoic acid, Z-11-, undecane, and myristic acid. FT-IR spectroscopy confirmed the presence of carboxylic acid, phenols, aromatics, ethers, amides, sulfonates, and ketones. Moreover, total phenolic contents (TPC) and total flavonoid contents (TFC) in ethyl acetate extract were 2.56 and 2.51 mg GAE/g and in n-butanol extract were 2.11 and 2.25 mg QE/g, respectively. Ethyl acetate and n-butanol extracts at a high concentration of 100 mg mL-1 showed 66.64 and 56.56 % inhibition of DPPH, respectively. Antimicrobial activity revealed that Candida albicans was the most susceptible microorganism, followed by Bacillus subtilis, Staphylococcus aureus, and Escherichia coli, whereas Pseudomonas aeruginosa showed the least inhibition at all concentrations. The in vivo hypoglycemic study revealed that both extracts exhibited concentration-dependent hypoglycemic activities. In conclusion, this macroalgae exhibited antioxidant, antimicrobial, and hypoglycemic potentials.


Assuntos
Anti-Infecciosos , Phaeophyceae , Alga Marinha , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Hipoglicemiantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , 1-Butanol , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
7.
Polymers (Basel) ; 15(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050266

RESUMO

Wound healing faces significant challenges in clinical settings. It often contains a series of dynamic and complex physiological healing processes. Instead of creams, ointments and solutions, alternative treatment approaches are needed. The main objective of the study was to formulate bacitracin zinc-loaded topical patches as a new therapeutic agent for potential wound healing. A free radical polymerization technique was optimized for synthesis. Polyethylene glycol-8000 (PEG-8000) was chemically cross-linked with acrylic acid in aqueous medium, using Carbopol 934 as a permeation enhancer and tween 80 as surfactant. Ammonium persulfate and N,N'-Methylenebisacrylamide (MBA) were utilized as initiator and cross-linker. FTIR, DSC, TGA, and SEM were performed, and patches were evaluated for swelling dynamics, sol-gel analysis, in vitro drug release in various media. A Franz diffusion cell was used for the permeation study. Irritation and wound healing with the drug-loaded patches were also studied. The characterization studies confirmed the formation of a cross-linked hydrogel network. The highest swelling and drug release were observed in formulations containing highest Polyethylene glycol-8000 and lowest N,N'-Methylenebisacrylamide concentrations. The pH-sensitive behavior of patches was also confirmed as more swelling, drug release and drug permeation across skin were observed at pH 7.4. Fabricated patches showed no sign of irritation or erythema as evaluated by the Draize scale. Faster wound healing was also observed with fabricated patches compared to marketed formulations. Therefore, such a polymeric network can be a promising technology for speeding up wound healing and minor skin injuries through enhanced drug deposition.

9.
Int J Biol Macromol ; 233: 123544, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754264

RESUMO

The present work aims to purify and perform a preliminary analysis on a thermostable serine alkaline protease from a recently identified P. minor. The enzyme was purified 2.7-fold with a 12.4 % recovery using Sephadex G-100 chromatography, DEAE-cellulose, and ammonium sulphate precipitation. The isolated enzyme has a specific activity of 473 U/mg. The purified protease had a molecular mass of 29 kDa, and just one band was seen, which matched the band obtained using SDS-PAGE. High thermostability was demonstrated by the enzymes, which had half-lives of 31.79 and 6.0 min (a 5.3-fold improvement), enthalpies of denaturation (ΔH°) of 119.53 and 119.35 KJ mol-1, entropies of denaturation (ΔS°) of 32.96 and 41.11 J/mol·K, and free energies of denaturation (ΔG°) of 108.87 and 105.58 KJ mol-1 for the protease enzyme. Studies on the folding and stability of alkaline proteases are important since their use in biotechnology requires that they operate in settings of extreme pH and temperature. According to the kinetic and thermodynamic properties, the protease produced by P. minor is superior to that produced by other sources and previously described plants, and it might find utility in a variety of industrial fields.


Assuntos
Phalaris , Endopeptidases , Temperatura , Peptídeo Hidrolases/metabolismo , Sementes/metabolismo , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Cinética
10.
Nat Prod Bioprospect ; 13(1): 4, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598588

RESUMO

Alkaloids are a diverse group of natural phytochemicals. These phytochemicals in plants provide them protection against pests, and herbivorous organisms and also control their development. Numerous of these alkaloids have a variety of biological effects, and some have even been developed into medications with different medicinal properties. This review aims to provide a broad overview of the numerous naturally occurring alkaloids (isolated from both terrestrial and aquatic species) along with synthetically produced alkaloid compounds having prominent antiviral properties. Previous reviews on this subject have focused on the biological actions of both natural and synthetic alkaloids, but they have not gone into comprehensive detail about their antiviral properties. We reviewed here several antiviral alkaloids that have been described in the literature in different investigational environments i.e. (in-vivo, in-ovo, in-vitro, and in-silico), and found that these alkaloid compounds have significant antiviral properties against several infectious viruses. These alkaloids repressed and targeted various important stages of viral infection at non-toxic doses while some of the alkaloids reported here also exhibited comparable inhibitory activities to commercially used drugs. Overall, these anti-viral effects of alkaloids point to a high degree of specificity, implying that they could serve as effective and safe antiviral medicines if further pursued in medicinal and pharmacological investigations.

11.
Int J Biol Macromol ; 224: 20-31, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481331

RESUMO

Acid phosphatase (ACP) is a key enzyme in the regulation of phosphate feeding in plants. In this study, a new ACP from C. oxyacantha was isolated to homogeneity and biochemically described for the first time. Specific activity (283 nkat/mg) was found after 2573 times purification fold and (17 %) yield. Using SDS-PAGE under denaturing and nondenaturing conditions, ACP was isolated as a monomer with a molecular weight of 36 kDa. LC-MS/MS confirmed the presence of this band, suggesting that C. oxycantha ACP is a monomer. The enzyme could also hydrolyze orthophosphate monoester with an optimal pH of 5.0 and a temperature of 50 °C. Thermodynamic parameters were also determined (Ea, ΔH°, ΔG°, and ΔS°). ACP activity was further studied in the presence of cysteine, DTT, SDS, EDTA, ß-ME, Triton-X-100 H2O2, and PMSF. The enzyme had a Km of 0.167 mM and an Ea of 9 kcal/mol for p-nitrophenyl phosphate. The biochemical properties of the C. oxyacantha enzyme distinguish it from other plant acid phosphatases and give a basic understanding of ACP in C. oxyacantha. The results of this investigation also advance our knowledge about the biochemical significance of ACP in C. oxyacantha. Thermal stability over a wide pH and temperature range make it more suitable for use in harsh industrial environments. However, further structural and physiological studies are anticipated to completely comprehend its important aspects in oxyacantha species.


Assuntos
Fosfatase Ácida , Plântula , Fosfatase Ácida/química , Plântula/metabolismo , Cromatografia Líquida , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Espectrometria de Massas em Tandem , Termodinâmica , Temperatura , Fosfatos , Cinética , Peso Molecular , Especificidade por Substrato
12.
Mol Divers ; 27(6): 2505-2522, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36376718

RESUMO

The Hantaan virus (HTN) is a member of the hantaviridae family. It is a segmented type, negative-strand virus (sNSVs). It causes hemorrhagic fever with renal syndrome, which includes fever, vascular hemorrhage, and renal failure. This illness is one of the most serious hemorrhagic diseases in the world, and it is a major public health concern due to its high mortality rate. The Hantaan virus RNA-dependent RNA polymerase complex (RdRp) is involved in viral RNA transcription and replication for the survival and transmission of this virus. Therefore, it is a primary target for antiviral drug development. Interference with the endonucleolytic "cap-snatching" reaction by the HTN virus RdRp endonuclease domain is a particularly appealing approach for drug discovery against this virus. This RdRp endonuclease domain of the HTN virus has a metal-dependent catalytic activity. We targeted this metal-dependent enzymatic activity to identify inhibitors that can bind and disrupt this endonuclease enzyme activity using in-silico approaches i.e., molecular docking, molecular dynamics simulation, predicted absorption, distribution, metabolism, excretion, toxicity (ADMET) and drug-likeness studies. The docking studies showed that peramivir, and ingavirin compounds can effectively bind with the manganese ions and engage with other active site residues of this protein. Molecular simulations also showed stable binding of these ligands with the active site of HTN RdRp. Simulation analysis showed that they were in constant contact with the active site manganese ions and amino acid residues of the HTN virus endonuclease domain. This study will help in better understanding the HTN and related viruses.


Assuntos
Vírus Hantaan , RNA Polimerase Dependente de RNA , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Vírus Hantaan/genética , Vírus Hantaan/metabolismo , Simulação de Acoplamento Molecular , Manganês/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Íons
13.
J Biomol Struct Dyn ; 41(18): 9103-9120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36404610

RESUMO

Since its emergence in 2019, coronavirus infection (COVID-19) has become a global pandemic and killed several million people worldwide. Even though several types of vaccines are available against the COVID-19 virus, SARS-CoV-2, new strains are emerging that pose a constant danger to vaccine effectiveness. In this computational study, we identified and predicted potent allosteric inhibitors of the SARS-CoV-2 main protease (Mpro). Via molecular docking and simulations, more than 100 distinct flavonoids were docked with the allosteric site of Mpro. Docking experiments revealed four top hit compounds (Hesperidin, Schaftoside, Brickellin, and Marein) that bound strongly to the Mpro predicted allosteric site. Simulation analyses further revealed that these continually interacted with the enzyme's allosteric region throughout the simulation time. ADMET and Lipinski drug likenesses were calculated to indicate the therapeutic value of the top four hits: They were non-toxic and exhibited high human intestinal absorption concentrations. These novel allosteric site inhibitors provide a higher chance of drugging SARS-CoV2 Mpro due to the rapid mutation rate of the viral enzyme's active sites. Our findings provide a new avenue for developing novel allosteric inhibitors of SARS-CoV-2 Mpro.Communicated by Ramaswamy H. Sarma.

14.
Drug Dev Ind Pharm ; 48(11): 611-622, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36420771

RESUMO

OBJECTIVE: Ketorolac tromethamine (KT), selected as a model drug, is used in management of moderate to severe acute pain. It has a short half-life (∼5.5 h) and requires frequent dose administration when needed for longer period of time. In our current project, we designed pH responsive hydrogel blends of chondroitin sulfate/pluronic F-127 (CS/Pl) for the controlled release of ketorolac. METHODS: Hydrogel blends were fabricated using free radical polymerization reaction technique utilizing different ratios of chondroitin sulfate (CS) (polymer) and pluronic F-127 (polymer), acrylic acid (monomer), N,N'-methyl-bisacrylamide (MBA) (cross-linker), initiator ammonium persulfate (APS) and tween-80 (surfactant). The fabricated hydrogel blends were studied and evaluated for pH responsiveness, swelling, water absorbency, in vitro drug release, and morphological characteristics such as SEM, XRD, FTIR, and TGA/DSC. Acute toxicity study was performed on rabbits. RESULTS: Maximum swelling and water absorbency were shown by CS/Pl blends being significantly greater at 7.4 (basic pH) than in 1.2 (acidic pH). In vitro dissolution demonstrated pH responsive controlled KT release following zero order at higher pH (7.4) medium up to 36 h. FTIR studies confirmed the structures of our blends; SEM results showed porous framework; thermal studies revealed higher stability of hydrogels than the individual polymers; and XRD confirmed the nature of our blends. Toxicity study revealed the nontoxic nature of the hydrogel blends. CONCLUSION: The prepared CS/Pl hydrogels demonstrated stimuli-controlled release with delivery of drug for prolonged period of time and thus can minimize dosing frequency, safe drug delivery, increased patient compliance and easiness.


Assuntos
Cetorolaco , Poloxâmero , Animais , Coelhos , Preparações de Ação Retardada , Sulfatos de Condroitina , Hidrogéis/química , Polímeros/química , Concentração de Íons de Hidrogênio , Água
15.
Int J Biol Macromol ; 220: 1545-1555, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113598

RESUMO

The ß-galactosidase was extracted and purified from 100 g of C. arvensis seeds using a variety of protein purification procedures such as ammonium sulphate fractionation, gel filtration, and finally chromatography on a cationic ion exchanger. The effects of metal ions, kinetics parameters, and glycoprotein nature were determined, as well as the optimal pH and temperature of the purified enzyme. With a high specific activity (72 units/mg), ß-galactosidase was isolated to a 24-fold apparent electrophoretic homogeneity. The molecular mass of ß-galactosidase was determined as monomeric, which was further confirmed by SDS-PAGE and MALDI-TOF/MS analysis, with a 45 kDa molecular weight. The enzyme has a Km of 0.33 mM and a Vmax of 42 µmol/min Lactose in milk was reduced by 38.5 and 70 % after 4 h of incubation with ß-galactosidase from C. arvensis. The ß-galactosidase thermal inactivation kinetic parameters ΔH°, ΔS°, and ΔG° were calculated, indicating that the enzyme undergoes significant unfolding events during denaturation. Using ß-galactosidase from C. arvensis seeds, lactose hydrolysis in milk up to approx. 50 % was observed. The findings indicate the potential use of C. arvensis seeds for the production of low/delactosed milk for lactose-intolerant population.


Assuntos
Convolvulus , Lactose , Sulfato de Amônio , Animais , Convolvulus/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Lactose/metabolismo , Leite/química , Sementes/metabolismo , Temperatura , Termodinâmica , beta-Galactosidase/química
16.
Biomed Res Int ; 2022: 5883239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060130

RESUMO

Poor solubility is a global issue of copious pharmaceutical industries as large number of drugs in development stage as well as already marketed products are poorly soluble which results in low dissolution and ultimately dosage increase. Current study is aimed at developing a polyvinylpyrrolidone- (PVP-K30-) based nanogel delivery system for solubility enhancement of poorly soluble drug olanzapine (OLP), as solubilization enhancement is the most noteworthy application of nanosystems. Crosslinking polymerization with subsequent condensation technique was used for the synthesis of nanogels, a highly responsive polymeric networks in drug's solubility. Developed nanogels were characterized by percent entrapment efficiency, sol-gel, percent swelling, percent drug loaded content (%DLC), percent porosity, stability, solubility, in vitro dissolution studies, FTIR, XRD, and SEM analysis. Furthermore, cytotoxicity study was conducted on rabbits to check the biocompatibility of the system. Particle size of nanogels was found with 178.99 ± 15.32 nm, and in vitro dissolution study exhibited that drug release properties were considerably enhanced as compared to the marketed formulation OLANZIA. The solubility studies indicated that solubility of OLP was noticeably improved up to 36.7-fold in phosphate buffer of pH 6.8. In vivo cytotoxicity study indicated that prepared PVP-K30-based formulation was biocompatible. On the basis of results obtained, the developed PVP-K30-co-poly (AMPS) nanogel delivery system is expected to be safe, effective, and cost-effective for solubility improvement of poorly soluble drugs.


Assuntos
Polímeros , Povidona , Animais , Liberação Controlada de Fármacos , Nanogéis , Polímeros/química , Povidona/química , Coelhos , Solubilidade
17.
Molecules ; 27(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36014480

RESUMO

Since its emergence in early 2019, the respiratory infectious virus, SARS-CoV-2, has ravaged the health of millions of people globally and has affected almost every sphere of life. Many efforts are being made to combat the COVID-19 pandemic's emerging and recurrent waves caused by its evolving and more infectious variants. As a result, novel and unexpected targets for SARS-CoV-2 have been considered for drug discovery. 2'-O-Methyltransferase (nsp10/nsp16) is a significant and appealing target in the SARS-CoV-2 life cycle because it protects viral RNA from the host degradative enzymes via a cap formation process. In this work, we propose prospective allosteric inhibitors that target the allosteric site, SARS-CoV-2 MTase. Four drug libraries containing ~119,483 compounds were screened against the allosteric site of SARS-CoV-2 MTase identified in our research. The identified best compounds exhibited robust molecular interactions and alloscore-score rankings with the allosteric site of SARS-CoV-2 MTase. Moreover, to further assess the dynamic stability of these compounds (CHEMBL2229121, ZINC000009464451, SPECS AK-91811684151, NCI-ID = 715319), a 100 ns molecular dynamics simulation, along with its holo-form, was performed to provide insights on the dynamic nature of these allosteric inhibitors at the allosteric site of the SARS-CoV-2 MTase. Additionally, investigations of MM-GBSA binding free energies revealed a good perspective for these allosteric inhibitor-enzyme complexes, indicating their robust antagonistic action on SARS-CoV-2 (nsp10/nsp16) methyltransferase. We conclude that these allosteric repressive agents should be further evaluated through investigational assessments in order to combat the proliferation of SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Metiltransferases/metabolismo , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Sítio Alostérico , Humanos , Pandemias , Estudos Prospectivos
18.
Molecules ; 27(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35807565

RESUMO

Chrozophora tinctoria is an annual plant of the family Euphorbiaceae, traditionally used as a laxative, a cathartic and an emetic. A methanolic extract of Chrozophora tinctoria (MEC) whole plant and an n-butanol fraction of Chrozophora tinctoria (NBFC) were analyzed by gas chromatography-mass spectrometry (GC-MS) to detect the phytochemicals. MEC and NBFC were tested for in vitro anti acetylcholinesterase (AChE) potential. The effect of both samples on intestinal propulsive movement and spasmolytic activity in the gastrointestinal tract (GIT) was also studied. About twelve compounds in MEC and three compounds in NBFC were tentatively identified through GC-MS. Some of them are compounds with known therapeutic activity, such as toluene; imipramine; undecane; 14-methyl-pentadecanoic acid methyl ester; and hexadecanoic acid. Both NBFC and MEC samples were checked for acute toxicity and were found to be highly toxic in a dose-dependent manner, causing diarrhea and emesis at 1 g/kg concentration in pigeons, with the highest lethargy and mortality above 3 g/kg. Both the samples of Chrozophora tinctoria revealed significant (p ≤ 0.01) laxative activity against metronidazole (7 mg/kg) and loperamide hydrochloride (4 mg/kg)-induced constipation. NBFC (81.18 ± 2.5%) and MEC (68.28 ± 2.4%) significantly increased charcoal meal intestinal transit compared to distal water (41.15 ± 4.3%). NBFC exhibited a significant relaxant effect (EC50 = 3.40 ± 0.20 mg/mL) in spontaneous rabbit jejunum as compared to MEC (EC50 = 4.34 ± 0.68 mg/kg). Similarly, the impact of NBFC on KCl-induced contraction was more significant than that of MEC (EC50 values of 7.22 ± 0.06 mg/mL and 7.47 ± 0.57 mg/mL, respectively). The present study scientifically validates the folk use of Chrozophora tinctoria in the management of gastrointestinal diseases such as constipation. Further work is needed to isolate the phytochemicals that act as diarrheal agents in Chrozophora tinctoria.


Assuntos
Euphorbiaceae , Laxantes , Animais , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Euphorbiaceae/química , Laxantes/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Coelhos
19.
Molecules ; 27(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408541

RESUMO

Chrozophora tinctoria (Euphorbiaceae) has been used as an emetic, anthelminthic, and cathartic agent in traditional medicine. We used gas chromatography-mass spectrometry (GC-MS) to characterize the composition of ethyl acetate (EAC) and dichloromethane (DCMC) fractions from the whole Chrozophora tinctoria plant. EAC and DCMC fractions were evaluated for acetylcholinesterase (AChE) inhibitory activity and acute toxicity. Their effects on intestinal propulsive movement and spasmogenic activity of the gastrointestinal tract (GIT) muscle were also assessed. The compounds detected in both fractions were mostly fatty acids, with about seven compounds in EAC and 10 in DCMC. These included pharmacologically active compounds such as imipramine, used to treat depression, or hexadecanoic acid methyl ester, an antioxidant. Both EAC and DCMC fractions inhibited acetylcholinesterase (AChE) activity with IC50 values of 10 µg and 130 µg, respectively. Both the fractions were found to be toxic in a dose-dependent manner, inducing emesis at 0.5 g or higher and lethargy and mortality from 3-5 g upwards. Similarly, both of the fractions showed laxative activity in metronidazole- and loperamide-induced constipation models. EAC relaxed the intestinal muscle at a lower dose (1 mg/mL) than DCMC. Similarly, the EAC extract showed a significant relaxation effect (EC50 = 0.67 ± 0.15 mg/mL) on KCL-induced contraction in rabbit jejunum as compared to DCMC (EC50 = 5.04 ± 0.05 mg/kg). The present study strongly supports the folklore that this valuable plant is a cathartic agent. Further work is required to isolate and validate the bioactive compounds that act as diarrheal agents in Chrozophora tinctoria.


Assuntos
Euphorbiaceae , Extratos Vegetais , Acetilcolinesterase , Animais , Catárticos , Euphorbiaceae/química , Laxantes/farmacologia , Extratos Vegetais/química , Coelhos
20.
Mol Cell Biochem ; 477(4): 1139-1153, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35076817

RESUMO

Nepetalactones belongs to the group of iridoid monoterpenoids, which are present in the aerial parts of nepeta plants. Nepetalactone is an attractant to feline animals causing euphoric effects, while it is a repellent to mosquitoes and cockroaches. It is also a pheromone for several insect aphid species. The main objective of this research was to study the electronic and spectral properties of nepetalactones. We investigated its structural properties using hybrid density-functional theory of B3LYP and WB97XD functional with the 6-311++G(d,p) basis set to optimize the geometry, and then computed the electronic structure, HOMO-LUMO, natural bond orbitals, molecular electronic potential and its contour map. We also obtained spectral signatures of NMR, IR and UV-Vis, and compared them with experimental data from the literature. The DFT study provided different electronic and spectral information that will be of value for further research on making new derivatives of nepetalactones for commercial purposes. Nepetalactones have a promising future in the development of novel mosquito repellents for the control of malaria and arboviral diseases.


Assuntos
Monoterpenos Ciclopentânicos/química , Repelentes de Insetos/química , Pironas/química , Animais , Gatos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...