Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806816

RESUMO

This paper presents the results of a study of the hazards of ground ignition and/or explosion when various small-calibre projectiles struck various solid materials placed on a test stand in environments at risk of ignition (fire) or explosion (ricochets and projectile penetration of obstacles). For projectile ricochetting tests, the following were used: an armour plate, concrete, sidewalk and granite slabs, etc., and various small-calibre projectiles: 7.62 × 51 mm SWISS PAP, 7.62 × 51T, 7.62 × 51 mm M80, 7.62 × 54R B-32, 7.62 × 54R LPS and .308 Win. Norma Ecostrike. Projectiles impacts were recorded with a high-speed camera (50,400 fps) and thermal cameras (660 fps) and (2615 fps). The ignition capability of solid flammable materials during projectile ricochetting was studied, and the temperatures and surface areas of isotherms were measured as a function of time. From the spherical distribution of thermal energy radiation in space, their volumes, masses of air occupying the studied area, masses of projectile disintegrating into fragments (after impact), thermal energies during projectile ricochetting, histograms of area temperatures and temperatures were calculated. This energy was compared with the minimum ignition energy of the selected gases and liquid vapours, and the ignition temperature were determined. The probabilities of some of the selected gases and liquid vapours which can ignite or cause an explosion were determined. The thermal energies of the 7.62 × 54R B-32 (3400-9500 J) and 7.62 × 51T (2000-3700 J) projectiles ricochetting on the Armox 600 plate was sufficient to ignite (explode) propane-butane gas. The thermal energy of 7.62 × 54R B-32 projectiles ricochets on the non-metallic components (800-1200 J) was several times lower than that of projectiles ricochets on an Armox 600 plate (3400-9500 J). This is due to the transfer of much of the kinetic energy to the crushing of these elements.

2.
Materials (Basel) ; 15(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35160874

RESUMO

This paper describes the process of creating a numerical FEM (finite element method) model of the 5.56 × 45 mm SS109 projectile. The model was used to calculate the temperatures occurring in the projectile materials during the impact on the steel plate at an angle of 45°. The purpose of the investigation is to estimate the ability of a ricocheting projectile to cause ignition. For the same projectile, experimental tests were also carried out under the conditions adopted for the numerical investigation in order to validate the FEM model. During the experiment, temperature was measured with a thermal camera; the phenomenon was also recorded with a colour high-speed camera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...