Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244710

RESUMO

Scale-up to large-area Cu(In,Ga)Se2 (CIGS) solar panels is proving to be much more complicated than expected. Particularly, the non-vacuum wet-chemical buffer layer formation step has remained a challenge and has acted as a bottleneck in industrial implementations for mass-production. This technical note deals with the comparative analysis of the impact on different methodologies for the buffer layer formation on CIGS solar panels. Cd(1-x)ZnxS ((Cd,Zn)S) thin films were prepared by chemical bath deposition (CBD), and chemical surface deposition (CSD) for 24-inch (37 cm × 47 cm) patterned CIGS solar panel applications. Buffer layers deposited by the CBD method showed a higher Zn addition level and transmittance than those prepared by the CSD technique due to the predominant cluster-by-cluster growth mechanism, and this induced a difference in the solar cell performance, consequently. The CIGS panels with (Cd,Zn)S buffer layer formed by the CBD method showed a 0.5% point higher conversion efficiency than that of panels with a conventional CdS buffer layer, owing to the increased current density and open-circuit voltage. The samples with the CSD (Cd,Zn)S buffer layer also increased the conversion efficiency with 0.3% point than conventional panels, but mainly due to the increased fill factor.

2.
J Chem Phys ; 152(12): 124710, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32241146

RESUMO

MoOX is commonly considered to be a high work-function semiconductor. From x-ray photoelectron spectroscopy and photo-electrochemical analysis, it is shown that MoOX can be considered as an effective hole transfer layer for the GaP-based device. Specifically, in the absence of carbon contamination using an ion beam cleaning step, the oxygen vacancy derived defect band located inside the bandgap becomes the main charge transfer mechanism. We demonstrate, for the first time, a device with a MoOX/GaP junction that functions as an unbiased photo-charging cell for the redox flow battery system with AQS/AQSH2∥I-/I3 - redox couples. This work has important implications toward enabling MoOX applications beyond the conventional solar cells, including electrochemical energy storage and chemical conversion systems.

3.
ACS Nano ; 14(2): 1757-1769, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31967453

RESUMO

We introduce the synthesis of hybrid nanostructures comprised of ZnO nanocrystals (NCs) decorating nanosheets and nanowires (NWs) of MoS2 prepared by atomic layer deposition (ALD). The concentration, size, and surface-to-volume ratio of the ZnO NCs can be systematically engineered by controlling both the number of ZnO ALD cycles and the properties of the MoS2 substrates, which are prepared by sulfurizing ALD MoO3. Analysis of the chemical composition combined with electron microscopy and synchrotron X-ray techniques as a function of the number of ZnO ALD cycles, together with the results of quantum chemical calculations, help elucidate the ZnO growth mechanism and its dependence on the properties of the MoS2 substrate. The defect density and grain size of MoS2 nanosheets are controlled by the sulfurization temperature of ALD MoO3, and the ZnO NCs in turn nucleate selectively at defect sites on MoS2 surface and enlarge with increasing ALD cycle numbers. At higher ALD cycle numbers, the coalescence of ZnO NCs contributes to an increase in areal coverage and NC size. Additionally, the geometry of the hybrid structures can be tuned by changing the dimensionality of the MoS2, by employing vertical NWs of MoS2 as the substrate for ALD ZnO NCs, which leads to improvement of the relevant surface-to-volume ratio. Such materials are expected to find use in newly expanded applications, especially those such as sensors or photodevices based on a p-n heterojunction which relies on coupling transition-metal dichalcogenides with NCs.

4.
RSC Adv ; 8(12): 6331-6340, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35540426

RESUMO

Solar redox flow batteries have attracted attention as a possible integrated technology for simultaneous conversion and storage of solar energy. In this work, we review current efforts to design aqueous solar flow batteries in terms of battery electrolyte capacity, solar conversion efficiency and depth of solar charge. From a materials cost and design perspective, a simple, cost-efficient, aqueous solar redox flow battery will most likely incorporate only one semiconductor, and we demonstrate here a system where a single photocathode is accurately matched to the redox couples to allow for a complete solar charge. The single TiO2 protected Si photocathode with a catalytic Pt layer can fully solar charge a neutral TEMPO-sulfate/ferricyanide battery with a cell voltage of 0.35 V. An unbiased solar conversion efficiency of 1.6% is obtained and this system represents a new strategy in solar RFBs where a single silicon photocathode is paired with energetically suitable redox couples to build an integrated solar energy conversion and storage device with full realization of the energy storage capacity.

5.
Chem Soc Rev ; 46(7): 1933-1954, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28246670

RESUMO

Photoelectrochemical (PEC) solar-fuel conversion is a promising approach to provide clean and storable fuel (e.g., hydrogen and methanol) directly from sunlight, water and CO2. However, major challenges still have to be overcome before commercialization can be achieved. One of the largest barriers to overcome is to achieve a stable PEC reaction in either strongly basic or acidic electrolytes without degradation of the semiconductor photoelectrodes. In this work, we discuss fundamental aspects of protection strategies for achieving stable solid/liquid interfaces. We then analyse the charge transfer mechanism through the protection layers for both photoanodes and photocathodes. In addition, we review protection layer approaches and their stabilities for a wide variety of experimental photoelectrodes for water reduction. Finally, we discuss key aspects which should be addressed in continued work on realizing stable and practical PEC solar water splitting systems.

6.
ACS Appl Mater Interfaces ; 8(23): 14301-6, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27227816

RESUMO

Wide-band-gap mixed-halide CH3NH3PbI3-XBrX-based solar cells have been prepared by means of a sequential spin-coating process. The spin-rate for PbI2 as well as its repetitive deposition are important in determining the cross-sectional shape and surface morphology of perovskite, and, consequently, J-V performance. A perovskite solar cell converted from PbI2 with a dense bottom layer and porous top layer achieved higher device performance than those of analogue cells with a dense PbI2 top layer. This work demonstrates a facile way to control PbI2 film configuration and morphology simply by modification of spin-coating parameters without any additional chemical or thermal post-treatment.

7.
J Phys Chem Lett ; 5(20): 3456-61, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26278593

RESUMO

Sputter deposition of 50 nm thick NiO films on p(+)-n-Si and subsequent treatment in an Fe-containing electrolyte yielded highly transparent photoanodes capable of water oxidation (OER) in alkaline media (1 M KOH) with high efficiency and stability. The Fe treatment of NiO thin films enabled Si-based photoanode assemblies to obtain a current density of 10 mA/cm(2) (requirement for >10% efficient devices) at 1.15 V versus RHE (reversible hydrogen electrode) under red-light (38.6 mW/cm(2)) irradiation. Thus, the photoanodes were harvesting ∼80 mV of free energy (voltage), which places them among the best-performing Si-based photoanodes in alkaline media. The stability was proven by chronoamperometry at 1.3 V versus RHE for 300 h. Furthermore, measurements with electrochemical quartz crystal microbalances coupled with ICP-MS showed minor corrosion under dark operation. Extrapolation of the corrosion rate showed stability for more than 2000 days of continuous operation. Therefore, protection by Fe-treated NiO films is a promising strategy to achieve highly efficient and stable photoanodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA