Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38101748

RESUMO

BACKGROUND: How plants emit, perceive, and respond to sound vibrations (SVs) is a long-standing question in the field of plant sensory biology. In recent years, there have been numerous studies on how SVs affect plant morphological, physiological, and biochemical traits related to growth and adaptive responses. For instance, under drought SVs navigate plant roots towards water, activate their defence responses against stressors, and increase nectar sugar in response to pollinator SVs. Also, plants emit SVs during stresses which are informative in terms of ecological and adaptive perspective. However, the molecular mechanisms underlying the SV perception and emission in plants remain largely unknown. Therefore, deciphering the complexity of plant-SV interactions and identifying bonafide receptors and signaling players will be game changers overcoming the roadblocks in phytoacoustics. AIM OF REVIEW: The aim of this review is to provide an overview of recent developments in phytoacoustics. We primarily focuss on SV signal perception and transduction with current challenges and future perspectives. KEY SCIENTIFIC CONCEPTS OF REVIEW: Timeline breakthroughs in phytoacoustics have constantly shaped our understanding and belief that plants may emit and respond to SVs like other species. However, unlike other plant mechanostimuli, little is known about SV perception and signal transduction. Here, we provide an update on phytoacoustics and its ecological importance. Next, we discuss the role of cell wall receptor-like kinases, mechanosensitive channels, intracellular organelle signaling, and other key players involved in plant-SV receptive pathways that connect them. We also highlight the role of calcium (Ca2+), reactive oxygen species (ROS), hormones, and other emerging signaling molecules in SV signal transduction. Further, we discuss the importance of molecular, biophysical, computational, and live cell imaging tools for decoding the molecular complexity of acoustic signaling in plants. Finally, we summarised the role of SV priming in plants and discuss how SVs could modulate plant defense and growth trade-offs during other stresses.

2.
Planta ; 258(6): 105, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878056

RESUMO

MAIN CONCLUSION: Mechanosensitive channels are integral membrane proteins that rapidly translate extrinsic or intrinsic mechanical tensions into biological responses. They can serve as potential candidates for developing smart-resilient crops with efficient root systems. Mechanosensitive (MS) calcium channels are molecular switches for mechanoperception and signal transduction in all living organisms. Although tremendous progress has been made in understanding mechanoperception and signal transduction in bacteria and animals, this remains largely unknown in plants. However, identification and validation of MS channels such as Mid1-complementing activity channels (MCAs), mechanosensitive-like channels (MSLs), and Piezo channels (PIEZO) has been the most significant discovery in plant mechanobiology, providing novel insights into plant mechanoperception. This review summarizes recent advances in root mechanobiology, focusing on MS channels and their related signaling players, such as calcium ions (Ca2+), reactive oxygen species (ROS), and phytohormones. Despite significant advances in understanding the role of Ca2+ signaling in root biology, little is known about the involvement of MS channel-driven Ca2+ and ROS signaling. Additionally, the hotspots connecting the upstream and downstream signaling of MS channels remain unclear. In light of this, we discuss the present knowledge of MS channels in root biology and their role in root developmental and adaptive traits. We also provide a model highlighting upstream (cell wall sensors) and downstream signaling players, viz., Ca2+, ROS, and hormones, connected with MS channels. Furthermore, we highlighted the importance of emerging signaling molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), and neurotransmitters (NTs), and their association with root mechanoperception. Finally, we conclude with future directions and knowledge gaps that warrant further research to decipher the complexity of root mechanosensing.


Assuntos
Raízes de Plantas , Transdução de Sinais , Animais , Espécies Reativas de Oxigênio , Percepção , Biologia
3.
Plant Physiol Biochem ; 203: 108032, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37757722

RESUMO

In plants, reactive oxygen species (ROS) have emerged as a multifunctional signaling molecules that modulate diverse stress and growth responses. Earlier studies on ROS in plants primarily focused on its toxicity and ROS-scavenging processes, but recent findings are offering new insights on its role in signal perception and transduction. Further, the interaction of cell wall receptors, calcium channels, HATPase, protein kinases, and hormones with NADPH oxidases (respiratory burst oxidase homologues (RBOHs), provides concrete evidence that ROS regulates major signaling cascades in different cellular compartments related to stress and growth responses. However, at the molecular level there are many knowledge gaps regarding how these players influence ROS signaling and how ROS regulate them during growth and stress events. Furthermore, little is known about how plant sensors or receptors detect ROS under various environmental stresses and induce subsequent signaling cascades. In light of this, we provided an update on the role of ROS signaling in plant growth and stress biology. First, we focused on ROS signaling, its production and regulation by cell wall receptor like kinases. Next, we discussed the interplay between ROS, calcium and hormones, which forms a major signaling trio regulatory network of signal perception and transduction. We also provided an overview on ROS and nitric oxide (NO) crosstalk. Furthermore, we emphasized the function of ROS signaling in biotic, abiotic and mechanical stresses, as well as in plant growth and development. Finally, we conclude by highlighting challenges and future perspectives of ROS signaling in plants that warrants future investigation.

4.
Plants (Basel) ; 12(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37050128

RESUMO

Plants are very often confronted by different heavy metal (HM) stressors that adversely impair their growth and productivity. Among HMs, chromium (Cr) is one of the most prevalent toxic trace metals found in agricultural soils because of anthropogenic activities, lack of efficient treatment, and unregulated disposal. It has a huge detrimental impact on the physiological, biochemical, and molecular traits of crops, in addition to being carcinogenic to humans. In soil, Cr exists in different forms, including Cr (III) "trivalent" and Cr (VI) "hexavalent", but the most pervasive and severely hazardous form to the biota is Cr (VI). Despite extensive research on the effects of Cr stress, the exact molecular mechanisms of Cr sensing, uptake, translocation, phytotoxicity, transcript processing, translation, post-translational protein modifications, as well as plant defensive responses are still largely unknown. Even though plants lack a Cr transporter system, it is efficiently accumulated and transported by other essential ion transporters, hence posing a serious challenge to the development of Cr-tolerant cultivars. In this review, we discuss Cr toxicity in plants, signaling perception, and transduction. Further, we highlight various mitigation processes for Cr toxicity in plants, such as microbial, chemical, and nano-based priming. We also discuss the biotechnological advancements in mitigating Cr toxicity in plants using plant and microbiome engineering approaches. Additionally, we also highlight the role of molecular breeding in mitigating Cr toxicity in sustainable agriculture. Finally, some conclusions are drawn along with potential directions for future research in order to better comprehend Cr signaling pathways and its mitigation in sustainable agriculture.

5.
Plants (Basel) ; 12(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37050141

RESUMO

Plant microbiomes represent dynamic entities, influenced by the environmental stimuli and stresses in the surrounding conditions. Studies have suggested the benefits of commensal microbes in improving the overall fitness of plants, besides beneficial effects on plant adaptability and survival in challenging environmental conditions. The concept of 'Defense biome' has been proposed to include the plant-associated microbes that increase in response to plant stress and which need to be further explored for their role in plant fitness. Plant-associated endophytes are the emerging candidates, playing a pivotal role in plant growth, adaptability to challenging environmental conditions, and productivity, as well as showing tolerance to biotic and abiotic stresses. In this article, efforts have been made to discuss and understand the implications of stress-induced changes in plant endophytic microbiome, providing key insights into the effects of heavy metals on plant endophytic dynamics and how these beneficial microbes provide a prospective solution in the tolerance and mitigation of heavy metal in contaminated sites.

6.
Plants (Basel) ; 12(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37050170

RESUMO

Soil flooding has emerged as a serious threat to modern agriculture due to the rapid global warming and climate change, resulting in catastrophic crop damage and yield losses. The most detrimental effects of waterlogging in plants are hypoxia, decreased nutrient uptake, photosynthesis inhibition, energy crisis, and microbiome alterations, all of which result in plant death. Although significant advancement has been made in mitigating waterlogging stress, it remains largely enigmatic how plants perceive flood signals and translate them for their adaptive responses at a molecular level. With the advent of multiomics, there has been significant progress in understanding and decoding the intricacy of how plants respond to different stressors which have paved the way towards the development of climate-resistant smart crops. In this review, we have provided the overview of the effect of waterlogging in plants, signaling (calcium, reactive oxygen species, nitric oxide, hormones), and adaptive responses. Secondly, we discussed an insight into past, present, and future prospects of waterlogging tolerance focusing on conventional breeding, transgenic, multiomics, and gene-editing approaches. In addition, we have also highlighted the importance of panomics for developing waterlogging-tolerant cultivars. Furthermore, we have discussed the role of high-throughput phenotyping in the screening of complex waterlogging-tolerant traits. Finally, we addressed the current challenges and future perspectives of waterlogging signal perception and transduction in plants, which warrants future investigation.

7.
Microorganisms ; 11(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36838356

RESUMO

Plant diseases pose a serious threat to crop production and the agricultural economy across the globe. Currently, chemical pesticides are frequently employed to combat these infections, which cause environmental toxicity and the emergence of resistant pathogens. Moreover, the genetic manipulation of plant defense pathways and the breeding of resistant genes has attained limited success due to the rapid evolution of pathogen virulence and resistance, together with host range expansion. Additionally, due to climate change and global warming, the occurrence of multiple stresses during disease outbreak has further impacted overall crop growth and productivity, posing a serious threat to food security. In this regard, harnessing the plant beneficial microbiome and its products can provide novel avenues for disease resistance in addition to boosting agricultural output, soil fertility and environmental sustainability. In plant-beneficial microbiome interactions, induced systemic resistance (ISR) has emerged as a key mechanism by which a beneficial microbiome primes the entire plant system for better defense against a wide range of phytopathogens and pests. In this review, we provide the recent developments on the role of plant beneficial microbiomes in disease resistance. We also highlight knowledge gaps and discuss how the plant immune system distinguishes pathogens and beneficial microbiota. Furthermore, we provide an overview on how immune signature hormones, such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), shape plant beneficial microbiome. We also discuss the importance of various high-throughput tools and their integration with synthetic biology to design tailored microbial communities for disease resistance. Finally, we conclude by highlighting important themes that need future attention in order to fill the knowledge gaps regarding the plant immune system and plant-beneficial-microbiome-mediated disease resistance.

8.
Microbiol Res ; 266: 127241, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36272324

RESUMO

Diverse forms of plant-microbe associations affect agriculture and the environment. Both plants and microbes have evolved to produce a variety of proteins and metabolites to enable or modulate their interaction with other organisms and modify their surrounding environments. Some such high-value metabolites produced by endophytes have been widely used as pharmaceutical agents and for socio-economic applications. Rapid advances in genomics have enabled the elucidation of the biology and ecology of endophytes, including their metabolic potential, by deciphering their genomic blueprints and investigating how they perform specific functions in various environmental and ecological contexts. Herein, we review recent advances in understanding the biology and ecology of endophytes and how this understanding has been harnessed to support agricultural sustainability, improve environmental health, and produce new metabolites of therapeutic significance. Genetic engineering of endophytes, guided by an enhanced understanding of their biology and advances in gene manipulation tools, promises to facilitate the production of "value-added" metabolites and the application of endophytes to solve agricultural and environmental problems. However, several knowledge deficiencies in endophyte biology should be remedied to realize their maximum potential.


Assuntos
Endófitos , Plantas , Endófitos/genética , Endófitos/metabolismo , Plantas/metabolismo
9.
Sci Rep ; 12(1): 18883, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344604

RESUMO

Pine wilt disease (PWD) is a destructive vector-borne forest disease caused by the nematode Bursaphelenchus xylophilus. To date, several options are available for the management of pine wilt disease; however constant development and search for natural products with potential nematicidal activity are imperative to diversify management options and to cope with the possible future emergence of resistance in parasitic nematodes. Here, a combined metabolomics and genomics approach was employed to investigate the chemical repertoire and biosynthetic potential of the bacterial endophyte Peribacillus frigoritolerans BE93, previously characterized to exhibit nematicidal activity against B. xylophilus. Feature-based molecular networking revealed the presence of diverse secondary metabolites. A cyclic imine heptapeptide, koranimine, was found to be among the most abundant secondary metabolites produced. Genome mining displayed the presence of several putative biosynthetic gene clusters (BGCs), including a dedicated non-ribosomal peptide synthase (NRPS) BGC for koranimine. Given the non-ribosomal peptide nature of koranimine, in silico molecular docking analysis was conducted to investigate its potential nematicidal activity against the target receptor ivermectin-sensitive invertebrate α glutamate-gated chloride channel (GluCl). Results revealed the binding of koranimine at the allosteric site of the channel-the ivermectin binding site. Moreover, the ligand-receptor interactions observed were mostly shared between koranimine and ivermectin when bound to the α GluCl receptor thus, suggesting a possibly shared mechanism of potential nematicidal activity. This study highlights the efficiency of combined metabolomics and genomics approach in the identification of candidate compounds.


Assuntos
Bacillaceae , Nematoides , Pinus , Animais , Ivermectina , Iminas , Simulação de Acoplamento Molecular , Antinematódeos/farmacologia , Antinematódeos/química , Nematoides/microbiologia , Pinus/parasitologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-35604831

RESUMO

The taxonomic assignment of Brevibacterium frigoritolerans together with the in-house environmental isolate EB93 was reassessed in this study using phylogenetic and phylogenomic approaches, and the detection of multiple molecular synapomorphies. Results from the reconstructed phylogenetic trees based on the 16S rRNA gene sequences, the concatenated protein sequences of GyrA-GyrB-RpoB-RpoC, and the whole-genome sequences revealed the consistent exclusion of B. frigoritolerans and the environmental isolate EB93 from the cluster formed by the type strains of the genus Brevibacterium. In addition, B. frigoritolerans and the environmental isolate EB93 were both observed to form a clade together with the type strains of the genus Peribacillus. The results from the analysis of the digital DNA-DNA hybridization, average nucleotide identity, average amino acid identity and the difference in the G+C content also corroborated with the phylogenetic inference, and that B. frigoritolerans and the environmental isolate EB93 were of the same species. Furthermore, the presence of the molecular synapomorphies in the protein sequences noted in the description of the genus Peribacillus were also observed in B. frigoritolerans, further strengthening its taxonomic affiliation in the genus. Based on the evidence from the multiple lines of analyses, we propose the reclassification of Brevibacterium frigoritolerans as a member of the genus Peribacillus and assume the name Peribacillus frigoritolerans comb. nov. (type strain DSM 8801 T=ATCC 25097T=CCUG 43489T=CIP 67.20T=JCM 11681T).


Assuntos
Brevibacterium , Bacillus , Técnicas de Tipagem Bacteriana , Composição de Bases , Brevibacterium/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Microorganisms ; 10(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35208814

RESUMO

Plant-associated endophytes define an important symbiotic association in nature and are established bio-reservoirs of plant-derived natural products. Endophytes colonize the internal tissues of a plant without causing any disease symptoms or apparent changes. Recently, there has been a growing interest in endophytes because of their beneficial effects on the production of novel metabolites of pharmacological significance. Studies have highlighted the socio-economic implications of endophytic fungi in agriculture, medicine, and the environment, with considerable success. Endophytic fungi-mediated biosynthesis of well-known metabolites includes taxol from Taxomyces andreanae, azadirachtin A and B from Eupenicillium parvum, vincristine from Fusarium oxysporum, and quinine from Phomopsis sp. The discovery of the billion-dollar anticancer drug taxol was a landmark in endophyte biology/research and established new paradigms for the metabolic potential of plant-associated endophytes. In addition, endophytic fungi have emerged as potential prolific producers of antimicrobials, antiseptics, and antibiotics of plant origin. Although extensively studied as a "production platform" of novel pharmacological metabolites, the molecular mechanisms of plant-endophyte dynamics remain less understood/explored for their efficient utilization in drug discovery. The emerging trends in endophytic fungi-mediated biosynthesis of novel bioactive metabolites, success stories of key pharmacological metabolites, strategies to overcome the existing challenges in endophyte biology, and future direction in endophytic fungi-based drug discovery forms the underlying theme of this article.

12.
Environ Pollut ; 300: 118940, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35122918

RESUMO

Heavy metal toxicity has become an impediment to agricultural productivity, which presents major human health concerns in terms of food safety. Among them, arsenic (As) a non-essential heavy metal has gained worldwide attention because of its noxious effects on agriculture and public health. The increasing rate of global warming and anthropogenic activities have promptly exacerbated As levels in the agricultural soil, thereby causing adverse effects to crop genetic and phenotypic traits and rendering them vulnerable to other stresses. Conventional breeding and transgenic approaches have been widely adapted for producing heavy metal resilient crops; however, they are time-consuming and labor-intensive. Hence, finding new mitigation strategies for As toxicity would be a game-changer for sustainable agriculture. One such promising approach is harnessing plant microbiome in the era of 'omics' which is gaining prominence in recent years. The use of plant microbiome and their cocktails to combat As metal toxicity has gained widespread attention, because of their ability to metabolize toxic elements and offer an array of perquisites to host plants such as increased nutrient availability, stress resilience, soil fertility, and yield. A comprehensive understanding of below-ground plant-microbiome interactions and their underlying molecular mechanisms in exhibiting resilience towards As toxicity will help in identifying elite microbial communities for As mitigation. In this review, we have discussed the effect of As, their accumulation, transportation, signaling, and detoxification in plants. We have also discussed the role of the plant microbiome in mitigating As toxicity which has become an intriguing research frontier in phytoremediation. This review also provides insights on the advancements in constructing the beneficial synthetic microbial communities (SynComs) using microbiome engineering that will facilitate the development of the most advanced As remedial tool kit in sustainable agriculture.


Assuntos
Arsênio , Microbiota , Agricultura , Arsênio/toxicidade , Produtos Agrícolas , Humanos , Melhoramento Vegetal
13.
J Ginseng Res ; 46(1): 1-10, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35035239

RESUMO

Ginseng has been well-known as a medicinal plant for thousands of years. Bacterial endophytes ubiquitously colonize the inside tissues of ginseng without any disease symptoms. The identification of bacterial endophytes is conducted through either the internal transcribed spacer region combined with ribosomal sequences or metagenomics. Bacterial endophyte communities differ in their diversity and composition profile, depending on the geographical location, cultivation condition, and tissue, age, and species of ginseng. Bacterial endophytes have a significant effect on the growth of ginseng through indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and nitrogen fixation. Moreover, bacterial endophytes can protect ginseng by acting as biocontrol agents. Interestingly, bacterial endophytes isolated from Panax species have the potential to produce ginsenosides and bioactive metabolites, which can be used in the production of food and medicine. The ability of bacterial endophytes to transform major ginsenosides into minor ginsenosides using ß-glucosidase is gaining increasing attention as a promising biotechnology. Recently, metabolic engineering has accelerated the possibilities for potential applications of bacterial endophytes in producing beneficial secondary metabolites.

14.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281232

RESUMO

Plants, being sessile, face an array of biotic and abiotic stresses in their lifespan that endanger their survival. Hence, optimized uptake of mineral nutrients creates potential new routes for enhancing plant health and stress resilience. Recently, minerals (both essential and non-essential) have been identified as key players in plant stress biology, owing to their multifaceted functions. However, a realistic understanding of the relationship between different ions and stresses is lacking. In this context, ionomics will provide new platforms for not only understanding the function of the plant ionome during stresses but also identifying the genes and regulatory pathways related to mineral accumulation, transportation, and involvement in different molecular mechanisms under normal or stress conditions. This article provides a general overview of ionomics and the integration of high-throughput ionomic approaches with other "omics" tools. Integrated omics analysis is highly suitable for identification of the genes for various traits that confer biotic and abiotic stress tolerance. Moreover, ionomics advances being used to identify loci using qualitative trait loci and genome-wide association analysis of element uptake and transport within plant tissues, as well as genetic variation within species, are discussed. Furthermore, recent developments in ionomics for the discovery of stress-tolerant genes in plants have also been addressed; these can be used to produce more robust crops with a high nutritional value for sustainable agriculture.


Assuntos
Produtos Agrícolas/metabolismo , Transporte de Íons/genética , Metabolômica/tendências , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Adaptação Biológica/genética , Íons , Locos de Características Quantitativas , Análise Espectral
15.
Curr Top Med Chem ; 21(17): 1572-1586, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34030614

RESUMO

Plant-endophyte associations represent an inexhaustible source of novel metabolites, exhibiting significance in environment, agriculture and pharmaceutical perspectives. The global outbreak of life-threatening diseases necessitates a need for a more targeted approach through efficient drug-discovery programs. In recent times, endophytes as "bio-factories" have been extensively explored for the production of novel bioactive metabolites demonstrating therapeutic properties. Resources in computational biology co-integrated with combinational chemistry have made significant contributions in this field, aiding in discovery and screening of potential "drug-like" molecules from endophytes. The review provides a meta-analysis of bioactive metabolite production from endophytes, extensively discussing the bio-prospection of natural products for pharmaceutical applications. In light of emerging importance of endophytes as anti-infective agents, an exploration of the pharmaceutical design of novel chemical entities and analogues has enabled efficient and cost-effective drug discovery programs. However, bottlenecks in endophyte biology and research require a better understanding of endophyte dynamics and mechanism of bioactive metabolite production towards a sustainable drug discovery program.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Desenho de Fármacos , Descoberta de Drogas , Endófitos/química , Endófitos/metabolismo , Doenças das Plantas/prevenção & controle , Biologia Computacional , Humanos , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia
16.
Biotechnol Adv ; 48: 107729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33705914

RESUMO

Inappropriate and injudicious use of antimicrobial drugs in human health, hygiene, agriculture, animal husbandry and food industries has contributed significantly to rapid emergence and persistence of antimicrobial resistance (AMR), one of the serious global public health threats. The crisis of AMR versus slower discovery of newer antibiotics put forth a daunting task to control these drug-resistant superbugs. Several phyto-antimicrobials have been identified in recent years with direct-killing (bactericidal) and/or drug-resistance reversal (re-sensitization of AMR phenotypes) potencies. Phyto-antimicrobials may hold the key in combating AMR owing to their abilities to target major microbial drug-resistance determinants including cell membrane, drug-efflux pumps, cell communication and biofilms. However, limited distribution, low intracellular concentrations, eco-geographical variations, beside other considerations like dynamic environments, climate change and over-exploitation of plant-resources are major blockades in full potential exploration phyto-antimicrobials. Synthetic biology (SynBio) strategies integrating metabolic engineering, RNA-interference, genome editing/engineering and/or systems biology approaches using plant chassis (as engineerable platforms) offer prospective tools for production of phyto-antimicrobials. With expanding SynBio toolkit, successful attempts towards introduction of entire gene cluster, reconstituting the metabolic pathway or transferring an entire metabolic (or synthetic) pathway into heterologous plant systems highlight the potential of this field. Through this perspective review, we are presenting herein the current situation and options for addressing AMR, emphasizing on the significance of phyto-antimicrobials in this apparently post-antibiotic era, and effective use of plant chassis for phyto-antimicrobial production at industrial scales along with major SynBio tools and useful databases. Current knowledge, recent success stories, associated challenges and prospects of translational success are also discussed.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana , Humanos , Estudos Prospectivos , Biologia Sintética
18.
Artigo em Inglês | MEDLINE | ID: mdl-32158753

RESUMO

Ginsenosides are a group of glycosylated triterpenes isolated from Panax species. Ginsenosides are promising candidates for the prevention and treatment of cancer as well as food additives. However, owing to a lack of efficient approaches for ginsenoside production from plants and chemical synthesis, ginsenosides may not yet have reached their full potential as medicinal resources. In recent years, an alternative approach for ginsenoside production has been developed using the model yeast Saccharomyces cerevisiae and non-conventional yeasts such as Yarrowia lipolytica and Pichia pastoris. In this review, various metabolic engineering strategies, including heterologous gene expression, balancing, and increasing metabolic flux, and enzyme engineering, have been described as recent advanced engineering techniques for improving ginsenoside production. Furthermore, the usefulness of a systems approach and fermentation strategy has been presented. Finally, the present challenges and future research direction for industrial cell factories have been discussed.

19.
Front Genet ; 11: 202, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211033

RESUMO

[This corrects the article DOI: 10.3389/fgene.2017.00200.].

20.
Plants (Basel) ; 9(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121565

RESUMO

Horizontal gene transfer (HGT), an important evolutionary mechanism observed in prokaryotes, is the transmission of genetic material across phylogenetically distant species. In recent years, the availability of complete genomes has facilitated the comprehensive analysis of HGT and highlighted its emerging role in the adaptation and evolution of eukaryotes. Endophytes represent an ecologically favored association, which highlights its beneficial attributes to the environment, in agriculture and in healthcare. The HGT phenomenon in endophytes, which features an important biological mechanism for their evolutionary adaptation within the host plant and simultaneously confers "novel traits" to the associated microbes, is not yet completely understood. With a focus on the emerging implications of HGT events in the evolution of biological species, the present review discusses the occurrence of HGT in endophytes and its socio-economic importance in the current perspective. To our knowledge, this review is the first report that provides a comprehensive insight into the impact of HGT in the adaptation and evolution of endophytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...