Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1367141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532875

RESUMO

Induced pluripotent stem cell (iPSC)-derived cardiac organoids offer a versatile platform for personalized cardiac toxicity assessment, drug screening, disease modeling, and regenerative therapies. While previous image-based contractility analysis techniques allowed the assessment of contractility of two-dimensional cardiac models, they face limitations, including encountering high noise levels when applied to three-dimensional organoid models and requiring expensive equipment. Additionally, they offer fewer functional parameters compared to commercial software. To address these challenges, we developed an open-source, particle image velocimetry-based software (PIV-MyoMonitor) and demonstrated its capacity for accurate contractility analysis in both two- and three-dimensional cardiac models using standard lab equipment. Comparisons with four other open-source software programs highlighted the capability of PIV-MyoMonitor for more comprehensive quantitative analysis, providing 22 functional parameters and enhanced video outputs. We showcased its applicability in drug screening by characterizing the response of cardiac organoids to a known isotropic drug, isoprenaline. In sum, PIV-MyoMonitor enables reliable contractility assessment across various cardiac models without costly equipment or software. We believe this software will benefit a broader scientific community.

2.
Sci Rep ; 12(1): 14118, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982115

RESUMO

The contaminated healthcare environment plays an important role in the spread of multidrug-resistant organisms (MDROs) and Clostridioides difficile. This study aimed to evaluate the antimicrobial effects of ozone generated by a dielectric barrier discharge (DBD) plasma reactor on various materials that were contaminated by vancomycin-resistant Enterococcus faecium (VRE), carbapenem-resistant Klebsiella pneumoniae (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA), carbapenem-resistant Acinetobacter baumannii (CRAB) and C. difficile spores. Various materials contaminated by VRE, CRE, CRPA, CRAB and C. difficile spores were treated with different ozone concentrations and exposure times. Atomic force microscopy (AFM) demonstrated bacterial surface modifications following ozone treatment. When an ozone dosage of 500 ppm for 15 min was applied to VRE and CRAB, about 2 or more log10 reduction was observed in stainless steel, fabric and wood, and a 1-2 log10 reduction in glass and plastic. Spores of C. difficile were more resistant to ozone than were all other tested organisms. On AFM, the bacterial cells, following ozone treatment, were swollen and distorted. The ozone generated by the DBD plasma reactor provided a simple and valuable decontamination tool for the MDROs and C. difficile spores, which are known as common pathogens in healthcare-associated infections.


Assuntos
Acinetobacter baumannii , Clostridioides difficile , Ozônio , Enterococos Resistentes à Vancomicina , Carbapenêmicos/farmacologia , Clostridioides , Ozônio/farmacologia , Pseudomonas aeruginosa , Esporos Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...